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� Abstract
Manual neuron tracing is a very labor-intensive task. In the drug screening context, the
sheer number of images to process means that this approach is unrealistic. Moreover,
the lack of reproducibility, objectivity, and auditing capability of manual tracing is lim-
iting even in the context of smaller studies. We have developed fast, sensitive, and reli-
able algorithms for the purpose of detecting and analyzing neurites in cell cultures, and
we have integrated them in software called HCA-Vision, suitable for the research envir-
onment. We validate the software on images of cortical neurons by comparing results
obtained using HCA-Vision with those obtained using an established semi-automated
tracing solution (NeuronJ). The effect of the Sez-6 deletion was characterized in detail.
Sez-6 null neurons exhibited a significant increase in neurite branching, although the
neurite field area was unchanged due to a reduction in mean branch length. HCA-
Vision delivered considerable speed benefits and reliable traces. ' 2007 International

Society for Analytical Cytology
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NEURITE tracing capabilities are invaluable in the drug development arena to

identify compounds that display neuroprotective or neuroregenerative effects (1,2).

Detailed morphological analyses of neurons are also vital for studying the normal de-

velopment of dendritic and axonal arbors and for documenting neuropathological

changes. Neurite arborization patterns established during development are character-

istic for particular neuronal subtypes and relate to function. Neurite arbor size and

shape influence the integration of synaptic inputs (3) and these, in turn, are regulated

by both intrinsic developmental programs and external signals (4,5). Alterations in

neurite arbors have been observed in a number of neuropathological conditions

including mental retardation syndromes such as Down, Rett’s and Fragile X syn-

dromes (6), schizophrenia (7,8), and Alzheimer’s disease (9).

The simplest method for quantifying neurite arbors from digital micrographs

involves intensity thresholding. Under controlled imaging conditions, good results

can be obtained (10). However, most neurite images display noisy, low contrast areas

that affect the ability to detect neurites. A recent implementation of neurite tracing

by Xiong et al. used a multi-scale approach, with a Hessian matrix guiding the tracing

(11). These authors report measurements of the total length of neurites and of the

number of extremities. A system to study neurite dynamics has also been described

(12). One of its most interesting features is the ability to correct for relatively frequent

tracing mistakes by the use of a probabilistic model, making use of a mask associated

with areas where pixel intensities change significantly from image to image.

Here, we present a fully automated image analysis solution for generating neur-

ite traces, for segmenting the cell soma, for associating neurites with their respective
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soma, and for producing statistical results on a per-cell basis.

We do not attempt to differentiate axons from dendrites.

Accordingly, we use the term neurite throughout the manu-

script.

Our algorithm is very fast due to its conceptual simplicity

(13). Certain elements of our solution are integral to a few

commercial platforms in the High Content Analysis industry

(14). However, we have found that some applications, such as

the analysis of subtle phenotypes, are particularly demanding

in terms of tracing quality. Additionally, the variability

between images acquired on a research microscope is typically

much greater than on a dedicated High Content Analysis

instrument. Our solution improves robustness and quality of

tracing and still allows on the order of ten images per minute

to be processed.

Here, we analyze a representative data set consisting of a

total of 101 image fields of embryonic cortical neurons in cul-

ture. The comparison was made between seizure-related gene

6 (Sez-6) knockout and wild-type neurons as part of a pheno-

typic characterization of the Sez-6 knockout mouse line (15).

Fifty one wild-type neurons were compared with 50 knockout

neurons. Analysis of this data set gives us opportunity to gain

a better understanding of the advantages and disadvantages of

our fully automated approach and to validate it. These meas-

urements revealed that Sez-6 null neurons display excessive

neurite branching.

Our system should allow investigating neurobiological

research questions quantitatively at speeds at least one order

of magnitude faster than hitherto possible.

MATERIALS AND METHODS

Cell Culture, Staining, and Imaging

The Sez-6 gene was ablated by homologous recombina-

tion in embryonic stem cells followed by transient Cre expres-

sion to delete exon I in the process removing transcriptional

and translational initiation sites. Embryonic neurons from

Sez-6 knockout embryos and wild-type littermate controls

were cultured as follows: Embryos (aged 15.5 days) from Sez-6

heterozygous matings were genotyped; cortices from wild-type

or Sez-6 knockout embryos were pooled separately and tissue

was digested with a Papain Dissociation Kit (Worthington

Biochemical Corporation, Lakewood, NJ). For low density

cultures, neurons were plated at 1–5 3 104/ml on poly-DL-or-

nithine/laminin coated coverslips in Neurobasal medium 1
2% B27 supplement (Invitrogen, VIC Australia), 0.5 mM glu-

tamine and antibiotics (50 IU/ml penicillin, 50 lg/ml strepto-

mycin). After 5 days in vitro, neurons were fixed (4% parafor-

maldehyde for 5 min) and immunostained for b-III tubulin
(TuJ1; Covance, Richmond, CA; 1/500) using AlexaFluor594–

conjugated donkey antimouse IgG (Molecular Probes, Eugene,

OR; 1/500) as the secondary antibody to reveal the cell soma

and all processes.

Images of neurons were captured using a digital SPOT

camera (Diagnostic Instruments, Sterling Heights, MI)

mounted on an Olympus inverted microscope model IX 70,

with a 403 objective. An Olympus filter set was used (model

U-MWIG). Pixel size in the object space was 0.262 lm and

images were 1033 3 1315 pixels. They were stored and ana-

lyzed in uncompressed 8-bit Tiff format.

Image Analysis

In most neuron images, bright and relatively thick pri-

mary neurites coexist with dim, thin secondary, and higher

order neurites. Additionally, variable labeling efficiency, back-

ground fluorescence, and cell debris complicate the task of tra-

cing neurites along their full length using an automated

approach. We have developed a robust algorithm based on

nonmaximum suppression to delineate neuronal processes

(13). The full workflow comprises three stages outlined below

and summarized in Table 1. Importantly, only a single set of

image analysis parameters was used to analyze the entire

image set of 101 image fields. This ensures that the wild type

and mutant images are analyzed in exactly the same manner.

These parameters are shown in Table 1. They can be set inter-

actively using three software assistants.

Cell Body Detection

In the first assistant, the images of the neurons stained

for b-III tubulin are first Gaussian filtered to suppress image

noise. They are background corrected using a top hat morpho-

Table 1. Image analysis workflow corresponding to the three assistants described in the text

(A) CELL BODY DETECTION (B) NEURITE DETECTION (C) NEURITE ANALYSIS

Smoothing (Gaussian filter: 22 pixels) Smoothing (Gaussian filter: 15 pixels) Debarb small branches (13 pixels)

Morphological top hat

(background correction: 218 pixels)

Nonmaximum suppression (contrast5 1.5) Thicken neuron bodies (5 pixels)

Suppression of neurites

(morphological opening: 15 pixels)

Removal of small objects (6 pixels) Remove small trees (4 pixels)

Intensity thresholding (0.62) Gap closing (9 pixels, quality5 0.75) Process all tree branches and

produce statistics

Object splitting

Object selection, based on area and

border proximity (69, and 65 pixels)

The values for the single set of image analysis parameters used in this contribution are indicated.
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logical filter with a disk structuring element larger than the

size of the largest cell body (16). A morphological opening

with a structuring element of a diameter smaller than the cell

body but larger than all neurites permits suppressing neurite-

like structures. Cell bodies are segmented using intensity

thresholding with a threshold value selected interactively by

the user. The resulting connected regions are then split using a

watershed algorithm on the Euclidian distance transform of

the images. Smaller objects, for example cell debris, are elimi-

nated based on their smaller sizes.

Neurite Detection Using Nonmaximum Suppression

In the second assistant, the images of the neurons are first

Gaussian filtered. We then use nonmaximum suppression to

identify linear features. Briefly, the algorithm classifies a pixel

as belonging to a linear feature if its intensity is highest among

all pixels within a small linear digital neighborhood. This is

repeated at a number of orientations (e.g., at 0, 45, 90, and

135�). The operation is repeated for every pixel in the images.

The resulting binary mask is then thinned (16). At this stage,

connected components smaller than a user defined threshold

(typically 4 pixels in diameter) are removed, and gaps in the

skeleton are closed using a dynamic programming approach

(17). Dynamic programming identifies the shortest path in

the image intensity landscape from every extremity of a linear

feature to every other linear feature. To limit the extent of

connections, a user defined threshold is set on the maximum

gap length to bridge. The average intensity value in the origi-

nal image along the shortest path is computed and a threshold

on this parameter is selected to conserve only high quality

paths.

Neurite Analysis

In the neurite analysis wizard, the results of the cell body

detection and of the neurite detection are combined to pro-

duce statistics on a per cell basis. First, very short lateral

branches that result from thinning artifacts are removed. Care

must be taken to avoid removing genuine, short lateral

branches. The appropriate threshold for the length of these

branches is set interactively. To that end, the software can tog-

gle between the original image and the segmentation result,

while the user is tuning parameters.

Neurite trees are constructed by a process of region grow-

ing on a graph. In our representation, the edges of the graph

are the branching points of the neurite skeleton, and the nodes

are the segments of the skeleton between branch points (See

Fig. 2B where each segment is shown in a different color).

Region growing begins with segments that touch neuron

bodies and continues until all connected segments have been

processed. At branch points, the average segment brightness is

used to determine priority of the daughter segments, and this

in turn produces branch level designations—primary, second-

ary, tertiary, etc.—for all segments in each neurite tree. This

process associates all neurites to their respective parent neur-

ites and cell soma.

Sometimes, a segment close to the cell soma fails to touch

it. To avoid losing these segments and the corresponding tree

they initiate, cell bodies are thickened using a morphological

thickening. Measurements are reported using the nonthick-

ened cell body, both for the cell body and the neurites.

Typical neuron images and the traces produced by the

software are shown in Figure 1.

RESULTS

It is important to acquire as many different morphologi-

cal measures as possible as one does not know in advance the

phenotype of a mutation. Over 10 different features are avail-

able in HCA-Vision (see Table 2). To validate the quality of

traces, we have compared them with results generated semi-

manually by a ‘‘blind’’ operator using NeuronJ (18), a popular,

semi-automated neurite tracing module of ImageJ (19). Neu-

ronJ finds accurate paths along neurites, with only a few clicks

needed to pin the trace to the correct path. Default tracing

parameters were used (Version 1.1.0).

The full complement of results for both the automated

and the semi-automated traces can be accessed online under

the supplementary material. Optimal parameters for the auto-

mated analysis were determined using several step by step

assistants described in the previous section. In the assistants,

sliders trigger image processing almost instantaneously when

released. This allowed rapid convergence towards optimal

parameter values. A single set of parameters was chosen by

experimenting on five images selected at random from images

of 101 neurons in total. The actual values used in this contri-

bution are shown in Table 1. The numerical results are shown

in Table 2, adjacent to the results from the semi-automated

tracing. These results pertain to the full set of 101 fields,

including the five images mentioned above.

It took a week to analyze the images semi-automatically

compared with only 15 min using HCA-Vision. This repre-

sents a gain in time of about two orders of magnitude. Overall,

as judged by the results of Table 2, the agreement between the

fully automated and the semi automated approaches was

excellent.

DISCUSSION

Using HCA-Vision, we obtained results very similar to

those obtained by semi-automated tracing. The results sup-

port the notion that Sez-6 inhibits neurite branching as the

number of branches was significantly higher in neurons lack-

ing Sez-6. On the other hand, the average neurite length was

significantly shorter for the Sez-6 knockout neurons, such that

the total neurite lengths and neurite fields were not signifi-

cantly different (see Table 2).

There is considerable biological variability in the results

with some neurons displaying total neurite lengths as much as

three times those of other neurons within the same class. This

stresses the importance of measuring a considerable number

of cells in order to reach statistical significance.

There are a number of reasons why slightly different

results were obtained using both approaches:

Inaccurate clicking when pinning semi-automated traces to

neurites.
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Figure 1. Representative images for Sez-6 knockout (Rows A and B), and wild type neurons (Rows C and D). Column 1: Original images.

Column 2: traces obtained using HCA-Vision; primary neurites are yellow, secondary neurites are magenta, and tertiary neurites are cyan.

Column 3: results obtained using NeuronJ. Primary neurites are magenta, secondary neurites are blue and tertiary neurites are yellow.

BRIEF REPORT

892 Automated Analysis of Sez-6 Null Neurons



Variable visibility of the neurites on the display. We have

found that using alternate software such as IRFANVIEW

(20), we could distinguish a few more neurites than in

NeuronJ, presumably because of image resampling.

Subjectivity in deciding upon the continuity of neurites at

branching points. There is an implicit expectation when

tracing neurites semi-manually that tertiary and higher

order processes should be short lateral branches. Corre-

spondingly, this suppresses a few very long tertiary pro-

cesses. In fact, after perusal of the individual images, we

could identify outliers that explained the discrepancy (see

e.g. frame NeuronJ1154.gif under supplementary mate-

rial). Using median values instead of averages to report

fully automated results decreases the influence of outliers.

One obtains 8.43 lm for the wildtype median tertiary

length, and 8.22 lm for the knockout median tertiary

length. The corresponding measurements for the semi-

automated results are 8.34 lm, and 8.75 lm, respectively,

in good agreement.

Fully automated tracing occasionally has problems brid-

ging over large fragments of cell debris that lie on a

neurite.

Figure 2. Results produced by HCA-Vision illustrating tracing in high density fields. Only the central cell was used for this manuscript. (A)

Original image. (B) Soma branches image; each segment is in a different color. (C) Branch level image; neurites are decomposed among

successive branching levels. (D) Tree parent image; every cell and all its associated neurites are in a different color. Cell bodies close to the

image boundary are automatically removed.
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Methods for measuring distances on a digital grid may vary

from software to software. We used strict Euclidian dis-

tances in HCA-Vision.

Occasionally, the software fails to correctly link a tertiary

neurite with a secondary neurite for example when the

contrast is very low or the branching density high.

The cells for this study were plated at low density to

avoid cell–cell contact. Only isolated neurons having

no contact with other neurons were analyzed. HCA-Vision

also produces results when cells are touching as shown in

Figure 2 but these results are more subject to interpretation.

In particular, the decision to attribute a neurite touching

two cells to either of them is arbitrary. In Figure 2, we also

illustrate alternative representations of neurite traces used

by the software.

More effort could go into better mimicking the tracing

and labeling of neurite branches with reference to an expert

user. However, different experts may use slightly different defi-

nitions and they may evolve over time. Our fully automated

approach, supported by our operational definitions was shown

to characterize subtle changes in a consistent and sensitive

manner.

In conclusion, HCA-Vision delivered comprehensive

structural information very rapidly. The images that were used

were representative in their variability of a typical research

environment. The tracing capabilities of the software may help

uncover subtle phenotypes that had been missed hitherto.
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Table 2. functionally relevant morphological features for both wild type (11), and sez-6 knockout (22) embryonic neurons

FULLYAUTOMATED (HCA-VISION) SEMI-AUTOMATED (NEURONJ)

11 22

PVAL

11 22

PVALMEAN STDM MEAN STDM MEAN STDM MEAN STDM

Area 206.2 9.2 204.1 9.7 0.88 NA NA NA NA NA

Perimeter 68.2 2.1 68.8 2.1 0.83 NA NA NA NA NA

Total neurite length 495.0 28.9 528.3 31.1 0.44 501.9 26.5 536.2 32.5 0.41

Max neurite length 162.3 9.9 126.9 8.5 0.01 152.4 10.6 118.8 7.8 0.01

Max branch layer 2.9 0.1 3.2 0.1 0.07 NA NA NA NA NA

Mean branch layer 1.5 0.0 1.5 0.0 0.17 NA NA NA NA NA

Num branch points 10.8 1.1 14.8 1.4 0.03 10.4 0.9 14.7 1.3 0.01

Num of roots 6.3 0.3 8.3 0.3 0.00 6.2 0.3 7.7 0.3 0.00

Num of segments 28.7 2.4 39.0 2.9 0.01 NA NA NA NA NA

Num of extremities 17.3 1.2 23.4 1.5 0.00 16.6 1.0 22.4 1.4 0.00

Neurite field Area 11324 1049.9 8917.0 712.7 0.06 NA NA NA NA NA

Max intensity neurite 156.6 7.8 146.2 8.6 0.38 NA NA NA NA NA

Mean intensity neurite 48.7 1.8 41.6 1.6 0.00 NA NA NA NA NA

Integrated intensity neurite 113986 8451 105458 8228 0.48 NA NA NA NA NA

Stdev intensity neurite 26.7 1.2 24.4 1.0 0.15 NA NA NA NA NA

Lvl1 No branches 6.3 0.3 8.3 0.3 0.00 6.2 0.3 7.7 0.3 0.00

Lvl1 Tot length 274.7 13.4 273.8 14.4 0.97 295.1 14.4 306.9 14.0 0.56

Lvl1 Max length 130.0 9.3 94.3 7.1 0.00 145.7 11.2 116.6 7.8 0.04

Lvl2 No branches 8.3 0.8 11.0 0.8 0.02 8.4 0.7 11.7 0.9 0.01

Lvl2 Tot length 178.7 16.0 198.8 15.0 0.37 180.5 15.9 196.8 17.2 0.49

Lvl2 Max length 73.2 8.6 59.7 7.1 0.23 65.1 7.7 48.3 5.7 0.08

Lvl3 No branches 3.2 0.5 5.0 0.9 0.10 3.1 0.4 3.8 0.5 0.08

Lvl3 Tot length 41.6 10.6 55.6 11.7 0.38 26.2 7.2 32.6 5.8 0.49

Lvl3 Max length 20.8 5.5 18.5 2.5 0.71 13.4 3.4 15.9 2.8 0.58

Max intensity neuron 228.4 5.2 226.9 4.8 0.83 NA NA NA NA NA

Mean intensity neuron 125.2 3.3 117.8 3.3 0.12 NA NA NA NA NA

Integrated intensity neuron 385778 22146 358095 21841 0.38 NA NA NA NA NA

Stdev intensity neuron 46.2 1.3 45.3 1.1 0.59 NA NA NA NA NA

Mean primary length 45.3 2.3 34.9 2.0 0.00 47.3 2.3 39.9 1.8 0.01

Mean sec length 23.6 2.0 19.2 1.2 0.01 21.4 1.9 16.8 1.5 0.01

Mean tert length 13.6 2.4 9.5 0.8 0.09 8.6 2.4 8.7 1.6 0.63

Stdm, Standard deviation on mean; pval, p-value of Student’s t-test.
Measurements in micrometers pertain to the full set of 101 neuron fields.
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