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Abstract

Optical flow or image motion estimation is important in the
area of computer vision. This paper presents a fast and reli-
able optical flow algorithm which produces a dense optical
flow map by using fast cross-correlation and shortest-path
techniques. Fast correlation is achieved by using the box
filtering technique which is invariant to the size of the cor-
relation window. The motion for each scan line of the input
image is obtained from the correlation volume by finding
the best 3D path using dynamic programming rather than
simply choosing the position that gives the maximum cross
correlation coefficient. Sub-pixel accuracy is achieved by
fitting the local correlation coefficients to a quadratic sur-
face. Typical running time for a 256x256 image is in the
order of a few seconds rather than minutes. A variety of
synthetic and real images have been tested, and good re-
sults have been obtained.

1. Introduction

Optical flow or image motion is the displacement of each
image pixels in an image sequence. Image motion estima-
tion is a fundamental issue in low-level vision and is used
in many applications in image sequence processing, such as
robot navigation, object tracking, image coding, structure
reconstruction.

There are several methods of estimating image mo-
tion or optical flow [2]. These methods can be divided
into correlation-based [1, 14], energy-based [7], phase-
based [5], and gradient-based [8, 10, 17, 11] methods.

Anandan [1] described a hierarchical computational
framework for the determination of dense motion fields
from a pair of images. It was based on a Laplacian pyra-
mid and used a coarse-to-fine matching strategy. Quénot
presented an algorithm for the computation of optical flow
using orthogonal dynamic programming [12]. The princi-
ple was to minimise the sum of square of differences (SSD)
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between a pair of images. The dynamic programming was
performed alternatively on horizontal and vertical image
stripes while reducing the stripe spacing and width. Bar-
ron et al investigated the accuracy, reliability and density of
the velocity measurements of a number of regularly cited
optical flow techniques [2].

The method described in this paper is correlation based.
The novel aspect of our method is in the use of dynamic pro-
gramming techniques to find a shortest path in the 3D cor-
relation coefficient volume for each of the scan lines. This
means the motion vectors are obtained by optimal matching
for the entire scan line rather than searching for the maxi-
mum correlation coefficient for each point separately.

Most of the algorithms mentioned earlier do not consider
the computation speed issues. It is our intention in this pa-
per to address some of the efficient and reliable implemen-
tation aspects of image motion estimation algorithms by us-
ing fast correlation and dynamic programming techniques.
The rest of the paper is organised as follows: Section 2 de-
scribes fast methods for obtaining similarity measures. The
detailed optical flow estimation method is described in Sec-
tion 3. Section 4 shows the experimental results obtained
using our fast image motion estimation method applied to
a variety of images. Section 5 discusses the reliability and
computation speed issues of our algorithm. Section 6 gives
concluding remarks.

2. Fast Similarity Measure

The most commonly used similarity measure is the
cross-correlation coefficient. It is popular because it corre-
sponds to optimal signal-to-noise ratio estimation [13]. The
sum of absolute differences (SAD) and the SSD, both dis-
similarity measures, have also been used. Their usage is
usually justified on the grounds that they are easy to imple-
ment and use less computing power. We will use the zero-
mean normalized cross-correlation (ZNCC) coefficient as
the measure of similarity between candidate matching ar-
eas. The estimate is independent of differences in bright-



ness and contrast due to the normalization with respect
to mean and standard deviation. But direct calculation of
ZNCC is computationally expensive compared with SAD
or SSD.

Faugeras et al [4] used recursion technique and hardware
implementation to obtain real time correlation for stereo
matching. In [15, 16], Sun presented a method for fast cal-
culations of cross correlation for stereo matching purposes.
In his case, the searching window was along the 1D epipo-
lar lines. For motion estimation, the search region needs to
be a 2D area. We extend Sun’s fast method in 1D into 2D
searches for motion estimation.

2.1. Fast Cross-Correlation

Using the algorithms presented in [15, 16], correlation
coefficients in the X - direction can be obtained efficiently.
To extend the 1D search into 2D search, we can shift the
right image in the Y- direction in the range of [—wy,, +wy].
For each Y- shift of the right image, the 1D fast correla-
tion can be obtained for the overlap regions between the left
and right images. For each of this Y- shift a volume of
M N D, correlation coefficients are obtained. M, N are the
image row and column numbers. D, is the search range
in the X- direction. Putting all these volumes together
we have a correlation volume of size M ND,D,, where
Dy (= 2wy + 1) is the search range in the Y- direction. The
complexity of the algorithm is O(M ND,D,). The storage
space needed for the correlation coefficients is in the order
of AMND,D, bytes.

2.2. Correlation Volume

The result of the correlation calculation described in Sec-
tion 2.1 is a volume containing the correlation coefficients
as shown in Fig. 1(a). The size of the volume depends
upon the image size M N and the motion search ranges
D,,D,. Each pixel in the first image has D,D,, correla-
tion coefficients in the corresponding search region. These
coefficients are stored in one depth row in the 3D volume
as shown in Fig. 1(a). This depth row represents the 2D
search region shown in the right hand side of the same fig-
ure. There are N such 2D search regions containing the
correlation coefficients in each horizontal scan line of the
input image. These 2D regions will be stacked together
to produce a 3D volume of correlation coefficients with di-
mensions D, Dy N for each scan line of the image as shown
in Fig. 1(b). This correlation volume will be used later to
obtain motion vectors.
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Figure 1. (a) An illustration of the correlation
volume obtained after using our fast corre-
lation method. The number of correlation
planes equals the size of the search region
D,D,. (b) Correlation volume for each scan
line. Each plane in the volume contains
the correlation coefficient values within the
search region. There are N such planes.

3. Motion Computation Strategy

3.1. Shortest Path in 3D Using Dynamic
Programming

Some researchers choose the position that gives the max-
imum correlation coefficient within the search region as the
motion vector for any point in the first image. Such meth-
ods do not take information around neighbouring pixels into
account. We use a shortest path through the 3D correlation
volume for each scan line of the input image to produce
a consistent set of motion vectors. actually one horizon-
tal slice of the correlation volume shown in Fig. 1(a) ob-
tained in Section 2.1. Rather than choosing the maximum
correlation coefficient, we find a best path from left to right
through the correlation volume, giving the maximum sum
of the correlation coefficients along the path. The position
of the path indicates the best motion vector for this scan line.
Because the path is continuous, the motion vectors obtained
for neighbouring pixels are more consistent with each other.

The best path from left to right through the 3D corre-
lation volume is found by using a dynamic programming
technique [3, 6, 9]. The best path gives the maximum sum
of the correlation coefficients along the path which satisfies
certain connectivity and smoothness constraints.

Now we describe an algorithm for the shortest-path ex-
traction in a 3D volume. For1 < ¢ < D,;,1 < j < D,
and 1 < k < N, let C(i,J,k) be the cost (or the corre-
lation coefficient value) of the (3, j, k)th value in the 3D
volume of size D, Dy N. The length of a path P is defined



as the sum of the costs along the path. We maintain two
arrays for the dynamic programming. Array Y (4, j, k) con-
tains the accumulated values and K (4, j, k) has the position
which produces the local maximum value. When & = 1,
Y (i,5,1) = C(i,4,1), i.e. the first plane of Y is a copy of
the first plane of C'. For the remaining planes of the volume,
the Y values at each position is obtained using the following
recursion:

(1)
The values of s,t which achieve the maximum in Eq. (1)
during each iteration is stored in K.

max
5.t <1, ]| <1

K(i,j, k) = argmax ;. <1 y<1Y (i+38,5+t,k—1) (2)

The values stored in volume K are used to back track along
the best path from the maximum value in the last plane of
Y.

3.2. Sub-pixel Accuracy

The shortest path extraction produces motion estimation
up to pixel level accuracy. Sub-pixel accuracy can be ob-
tained by fitting a second degree surface to the correla-
tion coefficients in the neighbourhood of the motion vec-
tor and the extrema of the surface can be obtained analyt-
ically. The general form of the second degree surface is:
flz,y)=A-22+B-2y+C-y*+D -2+ E-y+ F.
The maximum can be found where the slope is zero in the
quadratic equation. The position of this sub-pixel can be
found by solving the following equation after knowing the
coefficients of function f(x,y):

24-x + By + D = 0 3)
Bz + 2C-y + E = 0
Therefore we have:
x= (BE-2CD)/(4AC — B?) )
y= (BD —2AE)/(4AC — BZ)

When estimating the coefficients A, B,C, D, E, F' of the
function f(x,y), one usually needs to solve a set of over-
determined linear equations. The solution usually involves
complicated matrix operations such as matrix inversion. A
quick way of obtaining the coefficients of f(z,y) is neces-
sary to make sub-pixel accuracy motion estimation practi-
cal.

If the shortest path passes position (i, 7) at plane k of
the volume, we use the nine correlation coefficient values
in the neighbourhood of (i, j) as input. We have derived the
following formula for the calculation of A, B, C, D, E and
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F using nine neighbouring values.

A= (bo—2b1+by+b3 —2bs+bs+bs —2b7 +bs)/6

B = (bo—by—bs+bs)/4

C = (b0+b1+b2—2b3—2b4—2b5+b6+b7+b8)/6

D= (=bo+bz—bs+bs—bs+bsg)/6

E= (—bo—b1—bx+bs+br+bs)/6

F= (

5)

and bO = f(_17_1)7b1 f(07_1)7b2 = f(1,_1)7b3 =
f(=1,0),b4 = f(0,0),b5 = f(1,0),b6 = f(=1,1),b7 =
£(0,1),bs = f(1,1),i.e. b;(0 < i < 8) are the values of
the local correlation coefficients. One can, therefore, use
Eq. (5) to obtain the coefficients of function f(z,y), and
then use Eq. (4) to calculate the sub-pixel accuracy motion
vector.

3.3. Algorithm Steps

The steps of our proposed new algorithm for fast image
motion estimation are:

1. Perform image motion estimation using the method
described in Sections 2-3 which includes:

(a) Performing fast zero-mean normalised correla-
tion to obtain the correlation coefficients;

(b) Building a 3D correlation coefficient volume for
each scan line of the image;

(c) Using dynamic programming technique to find
the best path in the 3D volume, which will then
give the motion vectors;

(d) Fitting the correlation values in the neighbour-
hood of the motion vector obtained in the pre-
vious step to a surface to obtain sub-pixel accu-
racy.

2. Display motion map.

4. Experiment Results

This section shows some of the results obtained using
the method described in this paper. Comparisons with some
of the commonly cited techniques are also made. A variety
of images have been tested, including synthetic images and
different types of real images.

Synthetic Images

Fig. 2 shows the results of different techniques on the
image sequence Yosemite. The first two images in the top
row are frames 9 and 10 in the sequence. The third picture
in the top row is the correct optical flow field. The results of
Fleet, Horn and Lucas’ techniques give sparse flow fields,
while other techniques give dense optical flow. The only
techniques producing reasonable results for the top region
of the image are Singh’s and ours.

—bo + 2b1 — bs + 2b3 + Hba + 2bs — be + 2b7 — bs)/g



frame 9

correct flow

Anandan

Figure 2. The optical flow results of different techniques on the “Yosemite” sequence.

each technique is given below the corresponding picture.

Table 1 shows the errors, flow density, number of
image frames used and the time that several techniques
used for calculating the flow field. The errors in Fleet,
Horn and Lucas’ technique are small because they only
use the reliable flow estimates. Uras’ technique and
our technique give smaller errors and higher computa-
tion speed. But Uras et al’s technique does not perform
well at the top region of the image, and 15 frames of
the sequence are required. Our algorithm only uses two
frames. The typical running time for our new algorithm
on a 256256 image is in the order of seconds rather than
minutes. The test were run on a 8SMHz Sun SPARC-
server1000 running Solaris 2.5. Web page given below
can execute the algorithm on images supplied by readers.
www.dms.csiro.au/ changs/cgi-bin/index2.htm

Real Images

Four real image sequences have also been tested, and
good results have been obtained. Fig. 3 shows the results
of several techniques on the four real image sequences: SRI
Trees, NASA Sequence, Rubik Cube and Hamburg Taxi
provided in [2].

The name of

Table 1. Results for the image sequence
“Yosemite”.

Mean | Standard Frms User
Technique | error | deviation | Density | used time
Anandan 16.37 13.46 | 100.00% 2 | 849.79s
Fleet 4.95 12.38 30.64% 15 | 426.13s
Horn 5.36 10.20 32.88% 15 29.62s
Lucas 4.26 10.14 39.78% 15 32.94s
Nagel 13.50 16.29 | 100.00% 15 | 205.50s
Quénot 12.00 16.23 | 100.00% 2 | 182.63s
Singh 14.90 13.71 | 100.00% 3 | 339.36s
Uras 10.42 15.00 | 100.00% 15 17.58s
Sun 10.62 13.89 | 100.00% 2 14.35s
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5. Reliability and Speed

The reliable results of our algorithm are achieved by ap-
plying the combination of the following techniques: (1) The
zero-mean normalized cross-correlation similarity measure
is used, which is independent of differences in brightness
and contrast due to the normalization with respect to mean
and standard deviation. Similarity measure using SAD or
SSD, which is relatively cheap computationally, is not in-
dependent of differences in brightness and contrast. (2)
The correlation coefficient volume is used as input to the
dynamic programming stage. (3) Dynamic programming
technique is used to find a path in the 3D correlation vol-
ume. By using the dynamic programming technique on the
input correlation coefficient volume, one will obtain a more
smooth path within the volume.

The fast computational speed of our algorithm is
achieved in conjunction with some of the aspects mentioned
above for achieving reliability of the algorithm. Some of the
aspects are: (1) Fast zero-mean normarlized cross correla-
tion is developed. (2) Dynamic programming technique is
also computationally efficient. (3) A simple formula is used
for sub-pixel motion estimation after the initial motion vec-
tors have been obtained in the dynamic programming stage.

6. Conclusions

We have developed a fast and reliable image motion
estimation method using fast correlation and shortest-path
techniques. The algorithm produces a reliable dense mo-
tion map from just two successive images. The fast cross-
correlation method was developed from the box-filtering
idea. The time spent in the stage for obtaining the normal-
ized cross-correlation is almost invariant to the search win-
dow size. The motion vector for each scan line of the input
image is obtained by finding a 3D path using the dynamic
programming technique in the corresponding 3D correla-
tion coefficient volume. Sub-pixel accuracy is also achieved
by fitting a quadratic surface using the correlation coeffi-
cients values at the neighbourhood of the result after the
shortest-path stage. A simple formula has been derived for
this purpose. The typical running time for a 256 X256 im-
age is in the order of a few seconds rather than minutes.
The algorithm was shown to be fast and reliable compared
with several commonly cited techniques by testing on sev-
eral different types of images: both synthetic and real im-
ages.
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Figure 3. The results of different techniques on four of the commonly used images sequences. (Im-
ages courtesy of Barron, Fleet and Beauchemin [2].)
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