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Abstract

Image rectification is a process of transforming a set of images into a new set such that the epipolar lines in the transformed images have

the same direction as the image rows or columns to enable an efficient and reliable stereo matching. Previous algorithms for stereo image

rectification either work for two view uncalibrated or two/three view calibrated situations. In this paper we propose several novel techniques

to rectify uncalibrated trinocular images using the trilinear tensor or projective invariants or fundamental matrices obtained from a triplet of

images. Our new methods include: a rotation and skew method, an affine transformation method, and a vanishing points method. Real images

have been used for testing purposes, and accurate results have been obtained.
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1. Introduction

Image rectification is an important step in the three

dimensional analysis of scenes. For stereo vision, image

rectification can increase both the reliability and the speed

of the disparity estimation process. This is because in the

rectified images, the relative rotation among the original

images have been removed and the disparity search happens

along the image horizontal or vertical scanlines. The

rectification process requires certain camera calibration

parameters or weakly calibrated (uncalibrated) epipolar

geometries of the image pair or image triplet.

Hartley gave a mathematical basis and a practical

algorithm for the rectification of stereo images from widely

different viewpoints [1]. Al-Shalfan et al. presented a direct

algorithm for rectifying pairs of uncalibrated images [2].

Isgrò and Trucco presented a robust algorithm performing

uncalibrated rectification which does not require explicit

computation of the epipolar geometry [3]. Pollefeys et al.

proposed a simple and efficient rectification method for

general two view stereo images [4]. Loop and Zhang

proposed a technique for computing rectification homo-

graphies for stereo vision [5]. Papadimitriou and Dennis

presented an algorithm for rectifying stereo images when

the images are taken with convergence geometry (coplanar

X and Z axes and parallel Y axes) [6]. The rectification

processes by Hartley, Al-Shalfan et al., Isgrò and Trucco,

Pollefeys et al., Papadimitriou and Dennis and Loop and

Zhang can work for uncalibrated cameras. These algorithms

are developed for two view rectification situations.

Ayache and Hansen presented a technique for calibrating

and rectifying pairs or triplets images [7]. In their case, a

camera matrix needs to be estimated. Therefore the

algorithm works for calibrated cameras. Shao and Fraser

also developed a rectification method for calibrated

trinocular cameras [8]. The Digiclops developed at Point

Grey Research Inc used three calibrated cameras for stereo

vision after rectification [9]. Fusiello et al., presented a

compact algorithm for rectifying calibrated stereo images

[10]. All these algorithms only work for calibrated cameras.

In this paper, we propose several novel algorithms for

rectifying three uncalibrated images. Section 2 describes our

new methods for rectifying the trinocular images. Section 3

shows the experimental results obtained using our new

rectification methods. Section 4 gives concluding remarks.

2. Rectifying uncalibrated trinocular images

2.1. Obtaining fundamental matrices

In the case of three cameras or three images taken by one

camera, it has been shown in [11] that the correspondence

constraint is expressed by the trilinear tensor. The tensor can
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be recovered linearly from at least seven corresponding

points or lines across the three views. It is also shown in [11]

that the concatenation of epipolar geometries across three

views fails in cases where trilinearities do not. The

trilinearities use all the three views together, rather than in

pairs as in the case of the fundamental matrix, thereby

gaining additional numerical stability.

Introduce a Cartesian coordinate system with the origin

at the pin-hole of the camera and the z-axis aligned with the

optical axis and pointing outward. If we denote a matching

point among the three views as pð1Þ
i ¼ ðxð1Þi ; yð1Þi ; 1ÞT ;

pð2Þ
i ¼ ðxð2Þi ; yð2Þi ; 1ÞT ; and pð3Þ

i ¼ ðxð3Þi ; yð3Þi ; 1ÞT ; we have a

matching set {ðpð1Þ
i ; pð2Þ

i ; pð3Þ
i Þ; i ¼ 0; · · ·;N 2 1} where N is

the number of matched points appearing in all three views.

If we denote the trilinear tensor as T0
abg; (T0 is a 3 £ 3 £ 3

tensor, a;b; g ¼ 1; 2; 3), the relationships which governs

the parameters of the trilinear tensor and a matching point

can be written as the following linear equations [11]:

xð3Þi T0
a13pð1Þ

i 2 xð3Þi xð2Þi T0
a33pð1Þ

i þ xð2Þi T0
a31pð1Þ

i 2 T0
a11pð1Þ

i ¼ 0;

yð3Þi T0
a13pð1Þ

i 2 yð3Þi xð2Þi T0
a33pð1Þ

i þ xð2Þi T0
a32pð1Þ

i 2 T0
a12pð1Þ

i ¼ 0;

xð3Þi T0
a23pð1Þ

i 2 xð3Þi yð2Þi T0
a33pð1Þ

i þ xð2Þi T0
a31pð1Þ

i 2 T0
a21pð1Þ

i ¼ 0;

yð3Þi T0
a23pð1Þ

i 2 yð3Þi yð2Þi T0
a33pð1Þ

i þ xð2Þi T0
a32pð1Þ

i 2 T0
a22pð1Þ

i ¼ 0

where T0
app is a three element vector with a ¼ 1,2,3. i is the

index for the ith corresponding point among all the three

views.

There are twenty-seven (27) parameters to be estimated

for the trilinear tensor governing the relationships between

each of the triplet images. For each matching point, four

equations can be obtained. If at least seven matched

points are available, twenty-eight equations can be

established with 27 unknown parameters for the trilinear

tensor. The tensor can therefore be estimated by solving

the set of linear equations. Normalisation of image points

can be applied to improve the condition of the problem

[12].

It has been shown that the fundamental matrices which

govern the epipolar geometry between two views can be

obtained from the trilinear tensor. Shashua and Werman

gave an equation that shows the relationship between the

fundamental matrix F12 (the fundamental matrix between

view 1 and view 2) and the obtained trilinear tensor T0 as

[13]:

FT
12Eb þ ET

bF12 ¼ 0; b ¼ 1; 2; 3 ð1Þ

where the matrix Eb ¼ T0
pbp. Each Eb is a 3 £ 3 matrix.

Since the left hand side of the Eq. (1) is a symmetric matrix,

for each b, we have 6 independent equations relating F12

and the obtained trilinear tensor T0. F12 can therefore be

obtained using least squares method because we have 18

homogeneous equations for 9 unknowns. The fundamental

matrix F12 thus obtained governs the relationship between

view 1 and view 2. Similarly we can have the following

relationship:

FT
13Ea þ ET

aF13 ¼ 0; a ¼ 1; 2; 3 ð2Þ

where matrix Ea ¼ T0
app. From the above equation, we can

obtain the fundamental matrix F13 which is related to view 1

and view 3. Therefore we have obtained two fundamental

matrices that govern the epipolar geometries for views 1 and

2 and views 1 and 3.

The method described above for obtaining the funda-

mental matrices via the trilinear tensor involves only

solving a set of linear equations. The trilinear tensor is

also obtained by solving a set of linear equations. Quan

developed algorithms for the computation of the invariants

of sets of six points from three images [14]. Quan’s method

only requires six matched points appearing in three images

while the trilinear tensor method needs seven. In Quan’s

method, the invariants are calculated first, and then camera

projection matrices are determined. The epipolar geometry

can be obtain by using the obtained camera projection

matrices.

The fundamental matrices can also be estimated directly

from matching points between two views [15]. Once the

fundamental matrices among the three views are available,

they can then be used for rectification purposes.

In practice, the matching points among the views

obtained by automatic matching algorithms may contain

mismatches. Therefore robust estimation methods such as

those in [16] can be used. Nonlinear constraints can also be

used for estimating the trilinear tensor [17].

2.2. Projection matrix for the reference view

Given the epipolar geometry defined by the fundamental

matrix F12, a pair of epipoles can be obtained by F12e12 ¼ 0

and eT
21F12 ¼ 0; where e12 and e21 are the two epipoles on

images 1 and 2 based on the fundamental matrix F12.

Similarly, two epipoles (e13 and e31) on images 1 and 3 based

on the fundamental matrix F13 can also be obtained. The

image rectification process is to transform the images such

that the epipoles in the transformed images are at the infinity

either on the x-axis or on the y-axis. In the usual two view

stereo case, the epipoles of the transformed images are at the

infinity point (1,0,0)T. For three view stereo, the epipoles for

the transformed left and right image pair will be at (1,0,0)T.

However, the epipoles for the transformed left and top

image pair will be at (0,1,0)T (on the y-axis). Here the terms

‘left’, ‘right’ and ‘top’ refer to the relative positions only.

The left image is also the reference image. Fig. 1 illustrates

the initial positions of the epipoles obtained in the trinocular

images. Note that the positions of these epipoles are mostly

outside the input images although we draw them inside the

image.

We need to find a mapping function which will

transform the two epipoles e12 and e13 on the original

reference image into two points at the infinity (1,0,0)T and
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(0,1,0)T in the rectified image. In order to reduce image

distortions, image transformations need to be as rigid as

possible. In the following subsections, we will present

several novel algorithms for rectifying the reference

image.

2.2.1. Rotation and skew method

Assuming that the image centre is at ðu; vÞT ; we can use

the following transformation to shift the image coordinate

system to the image centre:

T ¼

1 0 2u

0 1 2v

0 0 1

0
BB@

1
CCA:

Then the image can be rotated such that the epipole

e12 ¼ ðe12½0�; e12½1�; 1Þ
T lies on the x-axis. This rotation

transformation takes the form of:

R ¼

cosu sinu 0

2sinu cosu 0

0 0 1

0
BB@

1
CCA

where u ¼ arctanðe12½1�=e12½0�Þ. After the epipole e12 has

been transformed to lie on the x-axis, we need to move

epipole e13 on the y-axis. This can be obtained by a skew

operation:

S ¼

1 s 0

0 1 0

0 0 1

0
BB@

1
CCA ð3Þ

where s ¼ 2t½0�=t½1�; and t ¼ ðt½0�; t½1�; 1ÞT is the trans-

formed position of e13 after applying the T and R

transformations. Now the two epipoles have been trans-

formed on to the image axes with value kx on the x-axis for

the first epipole and value ky on the y-axis for the second

epipole. The next step will be to shift the epipole positions

to the infinity. This transformation can be achieved using the

following matrix:

K ¼

1 0 0

0 1 0

21=kx 21=ky 1

0
BB@

1
CCA:

The combined transformation matrix is:

P1 ¼ KSRT: ð4Þ

This transformation will have the effect of shifting the two

epipoles in the reference image to the infinity on two

orthogonal coordinate axes. Note that the values of u; s; kx

and ky are obtained from the immediate previous trans-

formation operation. This sequence of transformation to

move the epipoles to the infinity is shown in Fig. 2.

We can also apply the skew transformation immediately

after the T transformation so that the two vectors formed

from the image centre and the two epipoles are perpen-

dicular to each other. The parameter s for the skew

transformation in this case can be obtained using the

method to be described in Section 2.2.3. Then a rotation

transformation can be applied to make the epipoles lie on

the image axes. This is then followed by the K transform-

ation. The combined transformation process will then be:

P1 ¼ KRST: ð5Þ

2.2.2. Affine transformation method

An alternative way of aligning the epipoles in the

reference image to the image axes is to choose firstly an

affine transformation such that the two epipoles are on

Fig. 1. The initial positions of the epipoles in the three images. C1 indicates

the image centre for the left or the reference image. C2 indicates the image

centre for the right image. C3 indicates the image centre for the top image.

e12 and e13 are the epipoles in the reference image. e21 is the epipole in the

right image and e31 is the epipole in the top image.

Fig. 2. The transformation process for moving the epipoles in the reference

image to the infinity. The rotation transformation moves epipole e12 on to

the x-axis. The skew transformation moves the epipole e013 on to the y-axis.

Then the K transformation moves the two epipoles to the infinity.
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the images axes. The general affine transformation is given

by:

x0 ¼ a11x þ a12y þ a13

y0 ¼ a21x þ a22y þ a23

(

One needs to have three pair of point positions before and

after the transformation to determine the affine parameters.

We can use the image centre and the two epipoles for this

purpose. If we assume that the image centre does not change

for this affine transformation, the parameters a13 and a23

need to be zero. Then we can use the two epipole positions

to determine a11; a12; a21 and a22 using the following

transformation:

x0 ¼ a11x þ a12y

y0 ¼ a21x þ a22y

(

The position for the first epipole e12 ¼ ðe12½0�; e12½1�; 1Þ
T

will be transformed to e012 ¼ ðe012½0�; 0; 1Þ
T ; where

e012½0� ¼ ke12k. Similarly, the position for the second epipole

e13 ¼ ðe13½0�; e13½1�; 1Þ
T will be transformed to e013 ¼

ð0; e013½1�; 1Þ
T ; where e013½1� ¼ ke13k. By solving two sets of

linear equations, the affine parameters can be obtained as:

a11 ¼ 2ke12k·e13½1�=det

a12 ¼ þke12k·e13½0�=det

a21 ¼ þke13k·e12½1�=det

a22 ¼ 2ke13k·e12½0�=det

8>>>>><
>>>>>:
where det ¼ e13½0�·e12½1�2 e12½0�·e13½1�. After obtaining

the affine parameters, we have the following affine

transformation matrix A to move the epipoles on to the

image axes:

A ¼

a11 a12 0

a21 a22 0

0 0 1

0
BB@

1
CCA:

After these, the K transformation can be used to bring the

epipoles to the infinity. By using the affine transformation

method, we have the combined transformation matrix:

P1 ¼ KAT: ð6Þ

Fig. 3 illustrates the process of moving the epipoles to the

infinity using the affine transformation methods.

2.2.3. Vanishing points method

Vanishing points have been used for 3D reconstruction

from images, matching perspective views [18], shape from

texture [19], and plane rectification [20,21].

Here we draw the connection that epipoles in the

original image space are vanishing points for parallel lines

in the rectified image space. We use the vanishing points

property in this section for a new application – trinocular

image rectification. In our situation, we have two epipoles

on the image plane of the reference image. These two

epipoles, which are treated as vanishing points (as epipolar

lines passing through epipoles), define the vanishing line

l ¼ ðl1; l2; l3Þ
T . The following perspective projection

matrix which is constructed from the vanishing line l

transforms parallel lines into converging lines [19]:

P ¼

1 0 0

0 1 0

l1 l2 l3

0
BB@

1
CCA: ð7Þ

After applying the projective transformation P on the original

image, the epipolar lines passing through each of the epipole

become parallel, and the positions of the two epipoles are at

the infinity. The positions of the transformed epipoles after

the T and P transformation are at m ¼ PTe12 ¼ ðu1; v1; 0Þ
T

and n ¼ PTe13 ¼ ðu2; v2; 0Þ
T . The two sets of epipolar lines

are usually not perpendicular to each other after this

perspective transformation. We then need to apply a skew

transformation such that the two sets of epipolar lines are

orthogonal to each other.

The parameter s in the skew matrix needs to be estimated

using the condition that the skew transformation makes the

two vectors m and n orthogonal to each other. The condition

says that the dot product of (Sm) and (Sn) needs to be zero.

That is:

ðSmÞ·ðSnÞ ¼ 0 ð8Þ

where S is defined in Eq. (3). Expanding Eq. (8) we obtain

v1v2s2 þ ðu1v2 þ u2v1Þs þ u1u2 þ v1v2 ¼ 0:

Using the known positions of m and n, we can obtain the

solutions for s from the above equation. There are usually two

solutions for s. The one with the smaller absolute value should

beused inorder toreduce theamountof image transformation.

After applying the SPT transformation, each set of

epipolar lines become parallel, and the two sets of epipolar

Fig. 3. Another transformation process to move the epipoles to the infinity.

The affine transformation moves the two epipoles on to the two image axes.

Then the K transformation move the epipoles to the infinity.
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lines are orthogonal to each other. We then need to rotate

the image so that the epipolar lines are along the image axes.

This rotation matrix R is obtained using a similar procedure

as described in Section 2.2.1. Therefore the combined

transformation for the reference image can be obtained as

P1 ¼ RSPT: ð9Þ

2.2.4. Optimising image translation

The u and v values mentioned at the beginning of Section

2.2.1 are taken as the centre of the reference image, i.e. u

equals half of the image column numbers and v equals half

of the image row numbers. The rectified reference image

obtained by applying the transformation matrix P1 is usually

different from the original image. Our intention is to

minimise the image difference before and after the

rectification process.

We can apply a minimisation process to search for the u

and v values so that the image difference before and after the

rectification process is minimised. The image difference is

calculated as the sum of the distances for the four corners of

the rectified and the original images. For each iteration of the

minimisation process, a pair of intermediate u and v values is

used for obtaining the projection matrix P1 which is used for

transforming the four corners of the original image. Then the

sum of the distances for the four corners of the rectified and

the original images can be calculated.

After the minimisation process, a pair of u and v values

(which defines T) and also the P1 matrix are obtained. This

P1 matrix will be used to rectify the reference image.

We can carry out another search of u and v after the P1

matrix has been fixed. For this round of optimisation, the P1

remain unchanged, but just search through the u and v

values so that the sum of the distances for the four corners of

the rectified and the original images is minimised. Fig. 4

shows the effects of adjusting the u,v values to minimise the

changes of the rectified images. Fig. 4(a) is the result

obtained without the u,v optimisation. Fig. 4(b) shows the

result obtained with the u,v optimisation. There are more

black pixels in Fig. 4(a) than in Fig. 4(b). The original input

images are shown in Fig. 6.

2.3. Projection matrices for two other views

Given the projection matrix P1 for the reference view and

the two fundamental matrices F12 and F13, the transform-

ation for the other two views can be obtained. Let P2 and P3

be the transformation matrices to rectify view 2 and view 3

respectively. It is proved in [1] that if F12 is factorised as

[e12 £ M12], where M12 is a non-singular matrix, then

P2 ¼ ðI þ P1e12aT ÞP1M12

¼ ðI þ ð1 0 0ÞT aT ÞP1M12 ¼ C2P1M12

where a ¼ ða1; a2; a3Þ
T and

C2 ¼

a1 þ 1 a2 a3

0 1 0

0 0 1

0
BB@

1
CCA:

Using the method described in [1], the a1, a2 and a3 values

in C2 can be estimated using least-squares technique.

Therefore P2 can be calculated from C2 P1 M12. Matrix P2

will transform the epipole e21 in view 2 into the infinity.

Therefore the original epipolar lines in view 2 can be made

parallel to the image x-axes. The corresponding epipolar

lines after transformation between view 1 and view 2 also

lie on the same horizontal scanline.

Similarly the transformation matrix P3 for view 3 can be

obtained from F13 and matching points between view 1 and

view 3 as:

P3 ¼ ðI þ P1e13bT ÞP1M13

¼ ðI þ ð0 1 0ÞT bT ÞP1M13 ¼ C3P1M13

Fig. 4. (a) Rectified reference image without the optimisation of the u, v values. (b) Rectified reference image with the optimisation of the u, v values.
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where b ¼ ðb1; b2; b3Þ
T and

C3 ¼

1 0 0

b1 b2 þ 1 b3

0 0 1

0
B@

1
CA:

The values for b1, b2 and b3 can be obtained similarly as a1,

a2 and a3. Matrix P3 will transform the epipole e31 in view 3

into the infinity. Therefore the original epipolar lines in

view 3 can be made parallel to the image y-axes. The

corresponding epipolar lines between view 1 and view 3 lie

on the same vertical scanline.

Using the three transformation matrices P1, P2 and P3, the

three original images can be rectified. When resampling the

input images for rectification, bilinear interpolation can be

used.

The process of obtaining a and b using least-squares

technique involves minimising the distance of the matching

points in a pair of views. The results of this is that the

average disparities for the rectified images are minimised.

However, this process may have the effect that some of the

image regions are cut off in the rectified image. To reduce

this effect, we can carry out a shift search similar to those

mentioned in Section 2.2.4. The search needs only to be

carried out in the horizontal direction (the u value) for view

2 and in the vertical direction (the v value) for view 3. The

objective function of the search or optimisation is again

the sum of distances for the four corners of the rectified and

the original images. The effect of introducing of this search

can be shown in Fig. 5.

After the trinocular image rectification, fast stereo

matching algorithms can be used to derive disparities

from the rectified images [22,9].

2.4. Algorithm steps

The steps of our algorithm for the trinocular image

rectification are the following:

1 Automated sub-pixel features matching is carried out

for the image triplet.

2 Obtain fundamental matrices. The fundamental

matrices can either be obtained through the trilinear

tensor or through projective invariants or estimated

directly from image matching points. Here we list the

main steps through the trilinear tensor method:

a Image coordinate scaling and translation such that

the centroid of all given matching coordinates is at

the origin, and the average distance of a matching

point from the origin is
ffiffi
2

p
.

b Solve a set of homogeneous equations using

singular value decomposition (SVD) to obtain the

trilinear tensor.

c Calculate the fundamental matrices F12 and F13

from the trilinear tensor.

3 Uncalibrated trinocular image rectification:

a Construct the transformation matrix P1 for the

reference image using one of the methods

described in Section 2.2.

b Compute the other two transformation matrices P2

and P3 as described in Section 2.3.

c Apply the three transformation matrices P1, P2 and

P3 to the three images in view 1, view 2 and view 3

respectively, to obtain the rectified images.

3. Experimental results

This section shows some of the rectification results

obtained using our new methods described in previous

sections. A variety of real images have been tested.

For each triplet of images we have the left-right pair of

images and left-top pair of images. We can use the method

described in Section 2.1 for estimating the trilinear tensor or

estimating the invariants in three images using six points

and then calculating the fundamental matrices for the pairs

of images in the triplet. We can also use Zhang et al’s

method for estimating the fundamental matrices directly for

each pair of images [15]. After we have obtained the

fundamental matrices for the left-right and the left-top pairs

of images, we can then carry out the rectification process

using our trinocular rectification algorithms.

Fig. 5. (a) Rectified right image without the optimisation of the u value. (b) Rectified right image with the optimisation of the u value.
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Fig. 6 gives an image triplet (left/reference in (b), right

in (c) and top in (a) with some epipolar lines overlaid. In

the reference image, there are two sets epipolar lines

passing through two epipoles. Fig. 7 shows a sequence of

transformed images using the vanishing points rectification

method. Fig. 7(a) is the initial epipolar lines (the same as

shown in Fig. 6(b). Fig 7(b) is the image obtained after

applying the PT transformation. After this transformation,

the epipolar lines in each set become parallel to each other.

But the epipolar lines in different sets are not orthogonal to

each other. Fig. 7(c) is the result after a skew

transformation which makes the epipolar lines in the two

set orthogonal to each other. Fig. 7(d) shows the final

rectification result after an rotation transformation which

aligns the two sets of epipolar lines to the image axes for

the reference image. The rectification results for the image

triplet are given in Fig. 8. Fig. 8(b) is the rectified

reference image with two sets of epipolar lines orthogonal

to each other and parallel to the image axes. Fig. 8(c) is

the rectified image for the right image with horizontal

epipolar lines. Fig. 8(a) is the rectified image for the top

image with vertical epipolar lines.

Fig. 9 shows a triplet of real images from the Calibrated

Imaging Lab (CIL) Stereo dataset from CMU with epipolar

lines overlaid. Note that although the images come with

calibration information, the calibration information is

not used for our uncalibrated image rectification tests.

The lower-left image is the reference image which contains

both near horizontal and near vertical epipolar lines. The top

image has near vertical epipolar line; and the right image

has near horizontal epipolar lines. The top-right drawing

shows the relative camera positions for the three images.

Fig. 10 shows the rectified images using our new methods.

The epipolar lines are now either horizontal or vertical.

Matching epipolar lines lie on the same horizontal or

vertical scanlines.

Fig. 11 shows another triplet of images with epipolar

lines before rectification. Fig. 12 gives the rectified images.

The amount of changes before and after image

transformation during the rectification process depends

upon the camera positions when taking the three images. For

example if the third image is far from the standard ‘top’

position relative to the reference one, then the amount of

image changes for this top image will be large.

Experiments have shown that the three methods for

obtaining the projection matrix for the reference image

described in Section 2.2 and the method for estimating the

projection matrix for the other two views generate the same

rectified images.

The rectification process (including the projection

matrices estimation and image resampling) takes about

1.6 s with u,v optimisation and about 0.8 s without u,v

optimisation for 756 £ 504 pixel images on a 533 MHz

DEC Alpha.

Fig. 6. Epipolar lines overlaid on the original trinocular images.

C. Sun / Image and Vision Computing 21 (2003) 259–269 265



Fig. 8. Rectified trinocular images for those shown in Fig. 6. Epipolar lines are becoming horizontal (left-right) or vertical (left-top).

Fig. 7. Rectification steps for the reference image using the vanishing point method. (a) Original image with epipolar lines overlaid. (b) Image obtained after the

translation and projection transformations. (c) Image obtained after skew operation on image in (b). (d) Rectified reference image after a further rotation

operation. Epipolar lines are becoming horizontal or vertical.
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Fig. 9. Original trinocular images and imaging positions. (a) The top image with epipolar lines overlaid; (b) reference image with epipolar lines overlaid. Two

sets of epipolar lines in the horizontal direction and vertical direction are shown; (c) the right image with epipolar lines overlaid; (d) illustration of the imaging

geometry for this example. The information shown in the drawing (d) is not used during the rectification process. (CIL stereo images from the Calibrated

Imaging Laboratory of the Carnegie Mellon University.)

Fig. 10. Rectified trinocular images for those shown in Fig. 9. Epipolar lines are becoming horizontal (left-right) or vertical (left-top).
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Fig. 11. Epipolar lines overlaid on the original trinocular images.

Fig. 12. Rectified trinocular images for those shown in Fig. 11. Epipolar lines are becoming horizontal (left-right) or vertical (left-top).
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4. Conclusions

In this paper, several novel methods for rectifying

uncalibrated trinocular images has been presented. The

transformation matrices applied to the original images are

constructed based on the epipolar geometries among the

images triplet. Three novel methods have been proposed for

estimating the rectification matrix for the reference image

including the rotation and skew method, the affine

transformation method, and the vanishing points method.

Real images have been tested and the results validate the

new methods.
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