
IMAGE AND VISION COMPUTING, VOL.21, NO.3, PP.259-269, MARCH 2003 1

Uncalibrated Three-View Image Rectification
Changming Sun

CSIRO Mathematical and Information Sciences, Locked Bag 17, North Ryde, NSW 1670, Australia
changming.sun@csiro.au

Abstract— Image rectification is a process of transforming a
set of images into a new set such that the epipolar lines in the
transformed images have the same direction as the image rows
or columns to enable an efficient and reliable stereo matching.
Previous algorithms for stereo image rectification either work for
two view uncalibrated or two/three view calibrated situations.
In this paper we propose several novel techniques to rectify
uncalibrated trinocular images using the trilinear tensor or
projective invariants or fundamental matrices obtained from a
triplet of images. Our new methods include: a rotation and skew
method, an affine transformation method, and a vanishing points
method. Real images have been used for testing purposes, and
accurate results have been obtained.

Index Terms— Rectification, Uncalibrated images, Trilinear
tensor, Fundamental matrix, Epipolar lines, Epipoles, Vanishing
points, Vanishing line, Projection matrix.

I. I NTRODUCTION

Image rectification is an important step in the three dimen-
sional analysis of scenes. For stereo vision, image rectification
can increase both the reliability and the speed of the disparity
estimation process. This is because in the rectified images, the
relative rotation among the original images have been removed
and the disparity search happens along the image horizontal
or vertical scanlines. The rectification process requires certain
camera calibration parameters or weakly calibrated (uncali-
brated) epipolar geometries of the image pair or image triplet.

Hartley gave a mathematical basis and a practical algorithm
for the rectification of stereo images from widely different
viewpoints [1]. Al-Shalfanet al presented a direct algorithm
for rectifying pairs of uncalibrated images [2]. Isgrò and
Trucco presented a robust algorithm performing uncalibrated
rectification which does not require explicit computation of
the epipolar geometry [3]. Pollefeyset al proposed a simple
and efficient rectification method for general two view stereo
images [4]. Loop and Zhang proposed a technique for com-
puting rectification homographies for stereo vision [5]. Pa-
padimitriou and Dennis presented an algorithm for rectifying
stereo images when the images are taken with convergence
geometry (coplanarX and Z axes and parallelY axes) [6].
The rectification processes by Hartley, Al-Shalfanet al, Isgr̀o
& Trucco, Pollefeyset al, Papadimitriou & Dennis and Loop
& Zhang can work for uncalibrated cameras. These algorithms
are developed for two view rectification situations.

Ayache and Hansen presented a technique for calibrating
and rectifying pairs or triplets images [7]. In their case, a
camera matrix needs to be estimated. Therefore the algorithm
works for calibrated cameras. Shao and Fraser also developed
a rectification method for calibrated trinocular cameras [8].
The Digiclops developed at Point Grey Research Inc used

three calibrated cameras for stereo vision after rectification [9].
Fusiello et al presented a compact algorithm for rectifying
calibrated stereo images [10]. All these algorithms only work
for calibrated cameras.

In this paper, we propose several novel algorithms for recti-
fying three uncalibrated images. Section II describes our new
methods for rectifying the trinocular images. Section III shows
the experimental results obtained using our new rectification
methods. Section IV gives concluding remarks.

II. RECTIFYING UNCALIBRATED TRINOCULAR IMAGES

A. Obtaining Fundamental Matrices

In the case of three cameras or three images taken by one
camera, it has been shown in [11] that the correspondence
constraint is expressed by the trilinear tensor. The tensor can
be recovered linearly from at least seven corresponding points
or lines across the three views. It is also shown in [11] that the
concatenation of epipolar geometries across three views fails
in cases where trilinearities do not. The trilinearities use all
the three views together, rather than in pairs as in the case of
the fundamental matrix, thereby gaining additional numerical
stability.

Introduce a Cartesian coordinate system with the origin at
the pin-hole of the camera and thez-axis aligned with the
optical axis and pointing outward. If we denote a matching
point among the three views asp(1)
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is the number of matched points appearing in all three views.
If we denote the trilinear tensor asT′

αβγ , (T′ is a 3×3×3
tensor,α, β, γ = 1, 2, 3), the relationships which governs the
parameters of the trilinear tensor and a matching point can be
written as the following linear equations [11]:
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whereT′
α.. is a three element vector withα = 1, 2, 3. i is

the index for theith corresponding point among all the three
views.

There are twenty-seven (27) parameters to be estimated for
the trilinear tensor governing the relationships between each
of the triplet images. For each matching point, four equations
can be obtained. If at least seven matched points are available,
twenty-eight equations can be established with 27 unknown
parameters for the trilinear tensor. The tensor can therefore be
estimated by solving the set of linear equations. Normalisation
of image points can be applied to improve the condition of the
problem [12].
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It has been shown that the fundamental matrices which
govern the epipolar geometry between two views can be ob-
tained from the trilinear tensor. Shashua and Werman gave an
equation that shows the relationship between the fundamental
matrix F12 (the fundamental matrix between view 1 and view
2) and the obtained trilinear tensorT′ as [13]:

FT
12Eβ + ET

β F12 = 0, β = 1, 2, 3 (1)

where the matrixEβ = T′
∗β∗. EachEβ is a 3×3 matrix. Since

the left hand side of the Equation (1) is a symmetric matrix,
for eachβ, we have 6 independent equations relatingF12 and
the obtained trilinear tensorT′. F12 can therefore be obtained
using least squares method because we have 18 homogeneous
equations for 9 unknowns. The fundamental matrixF12 thus
obtained governs the relationship between view 1 and view 2.
Similarly we can have the following relationship:

FT
13Eα + ET

αF13 = 0, α = 1, 2, 3 (2)

where matrixEα = T′
α∗∗. From the above equation, we can

obtain the fundamental matrixF13 which is related to view
1 and view 3. Therefore we have obtained two fundamental
matrices that govern the epipolar geometries for views 1 and 2
and views 1 and 3.

The method described above for obtaining the fundamental
matrices via the trilinear tensor involves only solving a set
of linear equations. The trilinear tensor is also obtained by
solving a set of linear equations. Quan developed algorithms
for the computation of the invariants of sets of six points
from three images [14]. Quan’s method only requires six
matched points appearing in three images while the trilinear
tensor method needs seven. In Quan’s method, the invariants
are calculated first, and then camera projection matrices are
determined. The epipolar geometry can be obtain by using the
obtained camera projection matrices.

The fundamental matrices can also be estimated directly
from matching points between two views [15]. Once the
fundamental matrices among the three views are available,
they can then be used for rectification purposes.

In practice, the matching points among the views obtained
by automatic matching algorithms may contain mismatches.
Therefore robust estimation methods such as those in [16] can
be used. Nonlinear constraints can also be used for estimating
the trilinear tensor [17].

B. Projection Matrix for the Reference View

Given the epipolar geometry defined by the fundamental
matrix F12, a pair of epipoles can be obtained byF12e12 = 0
and eT

21F12 = 0, where e12 and e21 are the two epipoles
on images 1 and 2 based on the fundamental matrixF12.
Similarly, two epipoles (e13 and e31) on images 1 and 3
based on the fundamental matrixF13 can also be obtained.
The image rectification process is to transform the images
such that the epipoles in the transformed images are at the
infinity either on thex-axis or on they-axis. In the usual
two view stereo case, the epipoles of the transformed images
are at the infinity point(1, 0, 0)T . For three view stereo, the
epipoles for the transformed left and right image pair will be at

(1, 0, 0)T . However, the epipoles for the transformed left and
top image pair will be at(0, 1, 0)T (on they-axis). Here the
terms “left”, “right” and “top” refer to the relative positions
only. The left image is also the reference image. Figure 1
illustrates the initial positions of the epipoles obtained in the
trinocular images. Note that the positions of these epipoles are
mostly outside the input images although we draw them inside
the image.
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Fig. 1. The initial positions of the epipoles in the three images.C1 indicates
the image centre for the left or the reference image.C2 indicates the image
centre for the right image.C3 indicates the image centre for the top image.
e12 and e13 are the epipoles in the reference image.e21 is the epipole in
the right image ande31 is the epipole in the top image.

We need to find a mapping function which will transform
the two epipolese12 ande13 on the original reference image
into two points at the infinity(1, 0, 0)T and (0, 1, 0)T in the
rectified image. In order to reduce image distortions, image
transformations need to be as rigid as possible. In the following
subsections, we will present several novel algorithms for
rectifying the reference image.

1) Rotation and Skew Method:Assuming that the image
centre is at(u, v)T , we can use the following transformation
to shift the image coordinate system to the image centre:

T =

 1 0 −u
0 1 −v
0 0 1

 .

Then the image can be rotated such that the epipolee12 =
(e12[0], e12[1], 1)T lies on thex-axis. This rotation transfor-
mation takes the form of:

R =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


where θ = arctan(e12[1]/e12[0]). After the epipolee12 has
been transformed to lie on thex-axis, we need to move epipole
e13 on they-axis. This can be obtained by a skew operation:

S =

 1 s 0
0 1 0
0 0 1

 (3)

where s = −t[0]/t[1], and t = (t[0], t[1], 1)T is the trans-
formed position ofe13 after applying theT andR transfor-
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mations. Now the two epipoles have been transformed on to
the image axes with valuekx on thex-axis for the first epipole
and valueky on they-axis for the second epipole. The next
step will be to shift the epipole positions to the infinity. This
transformation can be achieved using the following matrix:

K =

 1 0 0
0 1 0

−1/kx −1/ky 1

 .

The combined transformation matrix is:

P1 = KSRT. (4)

This transformation will have the effect of shifting the two
epipoles in the reference image to the infinity on two orthog-
onal coordinate axes. Note that the values ofθ, s, kx and ky

are obtained from the immediate previous transformation op-
eration. This sequence of transformation to move the epipoles
to the infinity is shown in Figure 2.
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Fig. 2. The transformation process for moving the epipoles in the reference
image to the infinity. The rotation transformation moves epipolee12 on to
the x-axis. The skew transformation moves the epipolee′

13 on to they-axis.
Then theK transformation moves the two epipoles to the infinity.

We can also apply the skew transformation immediately
after theT transformation so that the two vectors formed from
the image centre and the two epipoles are perpendicular to
each other. The parameters for the skew transformation in
this case can be obtained using the method to be described
in Section II-B.3. Then a rotation transformation can be
applied to make the epipoles lie on the image axes. This
is then followed by theK transformation. The combined
transformation process will then be:

P1 = KRST. (5)

2) Affine Transformation Method:An alternative way of
aligning the epipoles in the reference image to the image
axes is to choose firstly an affine transformation such that
the two epipoles are on the images axes. The general affine
transformation is given by:{

x′ = a11x + a12y + a13

y′ = a21x + a22y + a23

One needs to have three pair of point positions before and after
the transformation to determine the affine parameters. We can
use the image centre and the two epipoles for this purpose.
If we assume that the image centre does not change for this
affine transformation, the parametersa13 and a23 need to be
zero. Then we can use the two epipole positions to determine
a11, a12, a21 anda22 using the following transformation:{

x′ = a11x + a12y
y′ = a21x + a22y

The position for the first epipolee12 = (e12[0], e12[1], 1)T

will be transformed to e′
12 = (e′12[0], 0, 1)T , where

e′12[0] = ‖e12‖. Similarly, the position for the second epipole
e13 = (e13[0], e13[1], 1)T will be transformed toe′

13 =
(0, e′13[1], 1)T , where e′13[1] = ‖e13‖. By solving two sets
of linear equations, the affine parameters can be obtained as:

a11 = −‖e12‖ · e13[1]/det
a12 = +‖e12‖ · e13[0]/det
a21 = +‖e13‖ · e12[1]/det
a22 = −‖e13‖ · e12[0]/det

wheredet = e13[0] ·e12[1]−e12[0] ·e13[1]. After obtaining the
affine parameters, we have the following affine transformation
matrix A to move the epipoles on to the image axes:

A =

 a11 a12 0
a21 a22 0

0 0 1

 .

After these, theK transformation can be used to bring the
epipoles to the infinity. By using the affine transformation
method, we have the combined transformation matrix:

P1 = KAT. (6)

Figure 3 illustrates the process of moving the epipoles to
the infinity using the affine transformation methods.
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Fig. 3. Another transformation process to move the epipoles to the infinity.
The affine transformation moves the two epipoles on to the two image axes.
Then theK transformation move the epipoles to the infinity.

3) Vanishing Points Method:Vanishing points have been
used for 3D reconstruction from images, matching perspective
views [18], shape from texture [19], and plane rectifica-
tion [20], [21].
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Here we draw the connection that epipoles in the original
image space are vanishing points for parallel lines in the recti-
fied image space. We use the vanishing points property in this
section for a new application – trinocular image rectification.
In our situation, we have two epipoles on the image plane of
the reference image. These two epipoles, which are treated as
vanishing points (as epipolar lines passing through epipoles),
define the vanishing linel = (l1, l2, l3)T . The following
perspective projection matrix which is constructed from the
vanishing line l transforms parallel lines into converging
lines [19]:

P =

 1 0 0
0 1 0
l1 l2 l3

 . (7)

After applying the projective transformationP on the orig-
inal image, the epipolar lines passing through each of the
epipole become parallel, and the positions of the two epipoles
are at the infinity. The positions of the transformed epipoles
after the T and P transformation are atm = PTe12 =
(u1, v1, 0)T and n = PTe13 = (u2, v2, 0)T . The two sets
of epipolar lines are usually not perpendicular to each other
after this perspective transformation. We then need to apply a
skew transformation such that the two sets of epipolar lines
are orthogonal to each other.

The parameters in the skew matrix needs to be estimated
using the condition that the skew transformation makes the
two vectorsm andn orthogonal to each other. The condition
says that the dot product of(Sm) and(Sn) needs to be zero.
That is:

(Sm) · (Sn) = 0 (8)

whereS is defined in Equation (3). Expanding Equation (8)
we obtain

v1v2s
2 + (u1v2 + u2v1)s + u1u2 + v1v2 = 0.

Using the known positions ofm and n, we can obtain the
solutions fors from the above equation. There are usually two
solutions fors. The one with the smaller absolute value should
be used in order to reduce the amount of image transformation.

After applying theSPT transformation, each set of epipolar
lines become parallel, and the two sets of epipolar lines are
orthogonal to each other. We then need to rotate the image so
that the epipolar lines are along the image axes. This rotation
matrix R is obtained using a similar procedure as described
in Section II-B.1. Therefore the combined transformation for
the reference image can be obtained as

P1 = RSPT. (9)

4) Optimising Image Translation:The u and v values
mentioned at the beginning of Section II-B.1 are taken as
the centre of the reference image, i.e.u equals half of the
image column numbers andv equals half of the image row
numbers. The rectified reference image obtained by applying
the transformation matrixP1 is usually different from the orig-
inal image. Our intention is to minimise the image difference
before and after the rectification process.

We can apply a minimisation process to search for theu
and v values so that the image difference before and after

the rectification process is minimised. The image difference is
calculated as the sum of the distances for the four corners of
the rectified and the original images. For each iteration of the
minimisation process, a pair of intermediateu andv values is
used for obtaining the projection matrixP1 which is used for
transforming the four corners of the original image. Then the
sum of the distances for the four corners of the rectified and
the original images can be calculated.

After the minimisation process, a pair ofu and v values
(which definesT) and also theP1 matrix are obtained. This
P1 matrix will be used to rectify the reference image.

We can carry out another search ofu and v after theP1

matrix has been fixed. For this round of optimisation, the
P1 remain unchanged, but just search through theu and v
values so that the sum of the distances for the four corners of
the rectified and the original images is minimised. Figure 4
shows the effects of adjusting theu, v values to minimise
the changes of the rectified images. Figure 4(a) is the result
obtained without theu, v optimisation. Figure 4(b) shows the
result obtained with theu, v optimisation. There are more
black pixels in Figure 4(a) than in Figure 4(b). The original
input images are shown in Figure 6.

C. Projection Matrices for Two Other Views

Given the projection matrixP1 for the reference view and
the two fundamental matricesF12 andF13, the transformation
for the other two views can be obtained. LetP2 and P3

be the transformation matrices to rectify view 2 and view 3
respectively. It is proved in [1] that ifF12 is factorised as
[e12 ×M12], whereM12 is a non-singular matrix, then

P2 = (I + P1e12aT )P1M12

= (I + (1 0 0)T aT )P1M12

= C2P1M12

wherea = (a1, a2, a3)T and

C2 =

 a1 + 1 a2 a3

0 1 0
0 0 1

 .

Using the method described in [1], thea1, a2 and a3

values inC2 can be estimated using least-squares technique.
ThereforeP2 can be calculated fromC2P1M12. Matrix P2

will transform the epipolee21 in view 2 into the infinity.
Therefore the original epipolar lines in view 2 can be made
parallel to the imagex-axes. The corresponding epipolar lines
after transformation between view 1 and view 2 also lie on
the same horizontal scanline.

Similarly the transformation matrixP3 for view 3 can be
obtained fromF13 and matching points between view 1 and
view 3 as:

P3 = (I + P1e13bT )P1M13

= (I + (0 1 0)T bT )P1M13

= C3P1M13

whereb = (b1, b2, b3)T and

C3 =

 1 0 0
b1 b2 + 1 b3

0 0 1

 .
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(a) (b)

Fig. 4. (a) Rectified reference image without the optimisation of theu, v values. (b) Rectified reference image with the optimisation of theu, v values.

The values forb1, b2 andb3 can be obtained similarly asa1, a2

and a3. Matrix P3 will transform the epipolee31 in view 3
into the infinity. Therefore the original epipolar lines in view 3
can be made parallel to the imagey-axes. The corresponding
epipolar lines between view 1 and view 3 lie on the same
vertical scanline.

Using the three transformation matricesP1,P2 and P3,
the three original images can be rectified. When resampling
the input images for rectification, bilinear interpolation can be
used.

The process of obtaininga and b using least-squares
technique involves minimising the distance of the matching
points in a pair of views. The results of this is that the average
disparities for the rectified images are minimised. However,
this process may have the effect that some of the image regions
are cut off in the rectified image. To reduce this effect, we
can carry out a shift search similar to those mentioned in
Section II-B.4. The search needs only to be carried out in the
horizontal direction (theu value) for view 2 and in the vertical
direction (thev value) for view 3. The objective function of
the search or optimisation is again the sum of distances for
the four corners of the rectified and the original images. The
effect of introducing of this search can be shown in Figure 5.

After the trinocular image rectification, fast stereo matching
algorithms can be used to derive disparities from the rectified
images [22], [9].

D. Algorithm Steps

The steps of our algorithm for the trinocular image rectifi-
cation are the following:

1) Automated sub-pixel features matching is carried out for
the image triplet.

2) Obtain fundamental matrices. The fundamental matrices
can either be obtained through the trilinear tensor or
through projective invariants or estimated directly from
image matching points. Here we list the main steps
through the trilinear tensor method:

a) Image coordinate scaling and translation such that
the centroid of all given matching coordinates is at
the origin, and the average distance of a matching
point from the origin is

√
2.

b) Solve a set of homogeneous equations using sin-
gular value decomposition (SVD) to obtain the
trilinear tensor.

c) Calculate the fundamental matricesF12 and F13

from the trilinear tensor.
3) Uncalibrated trinocular image rectification:

a) Construct the transformation matrixP1 for the ref-
erence image using one of the methods described
in Section II-B.

b) Compute the other two transformation matricesP2

andP3 as described in Section II-C.
c) Apply the three transformation matricesP1,P2

andP3 to the three images in view 1, view 2 and
view 3 respectively to obtain the rectified images.

III. E XPERIMENTAL RESULTS

This section shows some of the rectification results obtained
using our new methods described in previous sections. A
variety of real images have been tested.

For each triplet of images we have the left-right pair of
images and left-top pair of images. We can use the method
described in Section II-A for estimating the trilinear tensor
or estimating the invariants in three images using six points
and then calculating the fundamental matrices for the pairs of
images in the triplet. We can also use Zhanget al’s method for
estimating the fundamental matrices directly for each pair of
images [15]. After we have obtained the fundamental matrices
for the left-right and the left-top pairs of images, we can
then carry out the rectification process using our trinocular
rectification algorithms.

Figure 6 gives an image triplet (left/reference in (b), right
in (c) and top in (a)) with some epipolar lines overlaid.
In the reference image, there are two sets epipolar lines
passing through two epipoles. Figure 7 shows a sequence of
transformed images using the vanishing points rectification
method. Figure 7(a) is the initial epipolar lines (the same as
shown in Figure 6(b)). Figure 7(b) is the image obtained after
applying thePT transformation. After this transformation, the
epipolar lines in each set become parallel to each other. But
the epipolar lines in different sets are not orthogonal to each
other. Figure 7(c) is the result after a skew transformation
which makes the epipolar lines in the two set orthogonal
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(a) (b)

Fig. 5. (a) Rectified right image without the optimisation of theu value. (b) Rectified right image with the optimisation of theu value.

to each other. Figure 7(d) shows the final rectification result
after an rotation transformation which aligns the two sets of
epipolar lines to the image axes for the reference image. The
rectification results for the image triplet are given in Figure 8.
Figure 8(b) is the rectified reference image with two sets of
epipolar lines orthogonal to each other and parallel to the
image axes. Figure 8(c) is the rectified image for the right
image with horizontal epipolar lines. Figure 8(a) is the rectified
image for the top image with vertical epipolar lines.

Figure 9 shows a triplet of real images from the Calibrated
Imaging Lab (CIL) Stereo dataset from CMU with epipolar
lines overlaid. Note that although the images come with cali-
bration information, the calibration information is not used for
our uncalibrated image rectification tests. The lower-left image
is the reference image which contains both near horizontal
and near vertical epipolar lines. The top image has near
vertical epipolar line; and the right image has near horizontal
epipolar lines. The top-right drawing shows the relative camera
positions for the three images. Figure 10 shows the rectified
images using our new methods. The epipolar lines are now
either horizontal or vertical. Matching epipolar lines lie on
the same horizontal or vertical scanlines.

Figure 11 shows another triplet of images with epipolar lines
before rectification. Figure 12 gives the rectified images.

The amount of changes before and after image transforma-
tion during the rectification process depends upon the camera
positions when taking the three images. For example if the
third image is far from the standard “top” position relative to
the reference one, then the amount of image changes for this
top image will be large.

Experiments have shown that the three methods for obtain-
ing the projection matrix for the reference image described
in Section II-B and the method for estimating the projection
matrix for the other two views generate the same rectified
images.

The rectification process (including the projection matrices
estimation and image resampling) takes about 1.6 seconds
with u, v optimisation and about 0.8 seconds withoutu, v
optimisation for 756×504 pixel images on a 533MHz DEC
Alpha.

IV. CONCLUSIONS

In this paper, several novel methods for rectifying uncali-
brated trinocular images has been presented. The transforma-
tion matrices applied to the original images are constructed
based on the epipolar geometries among the images triplet.
Three novel methods have been proposed for estimating the
rectification matrix for the reference image including the
rotation and skew method, the affine transformation method,
and the vanishing points method. Real images have been tested
and the results validate the new methods.
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(b) (c)

Fig. 6. Epipolar lines overlaid on the original trinocular images.

(a) (b)

(c) (d)

Fig. 7. Rectification steps for the reference image using the vanishing point method. (a) Original image with epipolar lines overlaid. (b) Image obtained
after the translation and projection transformations. (c) Image obtained after skew operation on image in (b). (d) Rectified reference image after a further
rotation operation. Epipolar lines are becoming horizontal or vertical.
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(b) (c)

Fig. 8. Rectified trinocular images for those shown in Figure 6. Epipolar lines are becoming horizontal (left-right) or vertical (left-top).
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Fig. 9. Original trinocular images and imaging positions. (a) The top image with epipolar lines overlaid; (b) reference image with epipolar lines overlaid.
Two sets of epipolar lines in the horizontal direction and vertical direction are shown; (c) the right image with epipolar lines overlaid; (d) illustration of
the imaging geometry for this example. The information shown in the drawing (d) is not used during the rectification process. (CIL stereo images from the
Calibrated Imaging Laboratory of the Carnegie Mellon University.)
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Fig. 10. Rectified trinocular images for those shown in Figure 9. Epipolar lines are becoming horizontal (left-right) or vertical (left-top).
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Fig. 11. Epipolar lines overlaid on the original trinocular images.
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Fig. 12. Rectified trinocular images for those shown in Figure 11. Epipolar lines are becoming horizontal (left-right) or vertical (left-top).
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