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Abstract—Image rectification is a process of transforming a three calibrated cameras for stereo vision after rectification [9].
set of images into a new set such that the epipolar lines in the Fysiello et al presented a compact algorithm for rectifying
transformed images have the same direction as the image rows q5jinrated stereo images [10]. All these algorithms only work
or columns to enable an efficient and reliable stereo matching. .

Previous algorithms for stereo image rectification either work for for calllbrated cameras. . .
two view uncalibrated or two/three view calibrated situations. In this paper, we propose several novel algorithms for recti-
In this paper we propose several novel techniques to rectify fying three uncalibrated images. Sect[oh Il describes our new
uncalibrated trinocular images using the trilinear tensor or methods for rectifying the trinocular images. Sec 11l shows
projective invariants or fundamental matrices obtained from a  he experimental results obtained using our new rectification

triplet of images. Our new methods include: a rotation and skew - . -
method, an affine transformation method, and a vanishing points methods. SeCt'OE]V gives concluding remarks.

method. Real images have been used for testing purposes, and 0

accurate results have been obtained. . RECTIFYING UNCALIBRATED TRINOCULAR IMAGES

I . . - A. Obtaining Fundamental Matrices
Index Terms— Rectification, Uncalibrated images, Trilinear ]
tensor, Fundamental matrix, Epipolar lines, Epipoles, Vanishing  In the case of three cameras or three images taken by one

points, Vanishing line, Projection matrix. camera, it has been shown in [11] that the correspondence
constraint is expressed by the trilinear tensor. The tensor can
be recovered linearly from at least seven corresponding points
or lines across the three views. It is also shown in [11] that the
Image rectification is an important step in the three dimegoncatenation of epipolar geometries across three views fails
sional analysis of scenes. For stereo vision, image rectificatiphcases where trilinearities do not. The trilinearities use all
can increase both the reliability and the speed of the disparifie three views together, rather than in pairs as in the case of
estimation process. This is because in the rectified images, the fundamental matrix, thereby gaining additional numerical
relative rotation among the original images have been removgdbility.
and the disparity search happens along the image horizontalintroduce a Cartesian coordinate system with the origin at
or vertical scanlines. The rectification process requires certdil, Pin-hole of the camera and theaxis aligned with the
camera calibration parameters or weakly calibrated (unca‘ﬁpF'Cal axis and pointing qutward.(llf) we derg?)te g)ma;chmg
brated) epipolar geometries of the image pair or image trip|&02|?t am(g;"ng (g‘e three wg\;vs 31533) ) (@ "y 5 1),
Hartley gave a mathematical basis and a practical algoritita = = (z;”,y T, andp” = (;7, 5,7, 1)7, we have a
for the rectification of stereo images from widely differenfnatching set (p'",p*,p{¥), i = 0,---, N — 1} where N
viewpoints [1]. Al-Shalfanet al presented a direct algorithm!S the number of matched points appearing in all three views.

for rectifyin airs of uncalibrated images [2]. Isgand If we denote the trilinear tensor 4B, v’ (T is & 3<3x3
fying p 9 [2]. 1sg tepsor,a, 5,7 = 1,2, 3), the relationships which governs the

Trucco presented a robust algorithm performing uncalibratg@rameters of the trilinear tensor and a matching point can be
rectification which does not require explicit computation ofiritten as the following linear equations [11]:
the epipolar geometry [3]. Pollefeyst al proposed a simple ;, L 3) (D) L ey 1 , 1
and efficient rectification method for general two view stereﬁ('gi o13 pglj - xéjxé;Tﬁ% p(ﬁl)) * xé;TﬁSl p(ﬁl)) ~Tan p((1> =0
images [4]. Loop and Zhang proposed a technique for corZ(‘i(-:j)TjY13 Py yi(g)m@)ij Py * x§2)T‘732 Py T‘,ﬂ? Py = 0
puting rectification homographies for stereo vision [5]. Pa%—/(is)r‘rﬂ23 P; =2 Y Tass P "+ 2 Tas1 Py "= Tan py ~ =0
LD . , RO W _ () @) @ 4 O (1) _ v M _ g
padimitriou and Dennis presented an algorithm for rectifying ~o23 Pi = —¥i ¥ Lass Pi i 32 Pi a22 P
stereo images when the images are taken with convergenagere T/, is a three element vector with = 1,2,3. 7 is
geometry (coplanaX and Z axes and parallel” axes) [6]. the index for thei'" corresponding point among all the three
The rectification processes by Hartley, Al-Shalfstral, Isgo  views.
& Trucco, Pollefeyset al, Papadimitriou & Dennis and Loop There are twenty-seven (27) parameters to be estimated for
& Zhang can work for uncalibrated cameras. These algorithrtige trilinear tensor governing the relationships between each
are developed for two view rectification situations. of the triplet images. For each matching point, four equations
Ayache and Hansen presented a technique for calibratiogn be obtained. If at least seven matched points are available,
and rectifying pairs or triplets images [7]. In their case, awenty-eight equations can be established with 27 unknown
camera matrix needs to be estimated. Therefore the algoritbarameters for the trilinear tensor. The tensor can therefore be
works for calibrated cameras. Shao and Fraser also developstimated by solving the set of linear equations. Normalisation
a rectification method for calibrated trinocular cameras [8pf image points can be applied to improve the condition of the
The Digiclops developed at Point Grey Research Inc usptbblem [12].

I. INTRODUCTION
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It has been shown that the fundamental matrices which, 0,0)”. However, the epipoles for the transformed left and
govern the epipolar geometry between two views can be dop image pair will be a{0, 1,0)” (on they-axis). Here the
tained from the trilinear tensor. Shashua and Werman gavetarms “left”, “right” and “top” refer to the relative positions
equation that shows the relationship between the fundameraaly. The left image is also the reference image. Fidure 1
matrix 15 (the fundamental matrix between view 1 and vievllustrates the initial positions of the epipoles obtained in the

2) and the obtained trilinear tens@' as [13]: trinocular images. Note that the positions of these epipoles are
T T mostly outside the input images although we draw them inside
F,Es + E{F1, =0, B=1,23 D) the image.

where the matri; = T, ;.. EachEg is a 3x3 matrix. Since

the left hand side of the Equatiop| (1) is a symmetric matrix,
for eachs, we have 6 independent equations relafihg and

the obtained trilinear tens&’. F;5 can therefore be obtained
using least squares method because we have 18 homogeneous
equations for 9 unknowns. The fundamental makix thus
obtained governs the relationship between view 1 and view 2.
Similarly we can have the following relationship:

FLE, +ElF;3 =0, a=1,2,3 )

where matrixE, = T.,,.. From the above equation, we can
obtain the fundamental matrik';3 which is related to view
1 and view 3. Therefore we have obtained two fundamental
matrices that govern the epipolar geometries for views 1 and 2
and views 1 and 3.
Th_e methOd deS(_:'_"bed above f(_)r obtaining the qudamenQd_ 1. The initial positions of the epipoles in the three imagés.indicates
matrices via the trilinear tensor involves only solving a sete image centre for the left or the reference image. indicates the image
of linear equations. The trilinear tensor is also obtained Iggntre for the right imageCs indicates the image centre for the top image.
solving a set of linear equations. Quan developed algorithi§i$ r?;ri?ﬁias;eamgfpi;p?riselgi;r;fe ﬁﬁf?;een&% 'i':"nzgggef 's the epipole in
for the computation of the invariants of sets of six points
from three images [14]. Quan’s method only requires siX We need to find a mapping function which will transform
matched points appearing in three images while the trilinegie two epipoles:;, ande;3 on the original reference image
tensor method needs seven. In Quan's method, the invarigats two points at the infinity(1,0,0)” and (0,1,0)7 in the
are calculated first, and then camera projection matrices gégtified image. In order to reduce image distortions, image
determined. The epipolar geometry can be obtain by using #ignsformations need to be as rigid as possible. In the following
obtained camera projection matrices. subsections, we will present several novel algorithms for
The fundamental matrices can also be estimated directtifying the reference image.
from matching points between two views [15]. Once the 1) Rotation and Skew MethodAssuming that the image
fundamental matrices among the three views are availabtentre is at(u,v)”, we can use the following transformation
they can then be used for rectification purposes. to shift the image coordinate system to the image centre:
In practice, the matching points among the views obtained

. : . . ; 1 0 —u
by automatic matching algorithms may contain mismatches. - o 1 -
Therefore robust estimation methods such as those in [16] can o 0 0 11)

be used. Nonlinear constraints can also be used for estimating
the trilinear tensor [17]. Then the image can be rotated such that the epipole=
(e12[0], e12[1],1)T lies on thex-axis. This rotation transfor-

B. Projection Matrix for the Reference View mation takes the form of:

Given the epipolar geometry defined by the fundamental
matrix F'12, a pair of epipoles can be obtained By;e s = 0
and el Fi» = 0, wheree;, and ey; are the two epipoles
on images 1 and 2 based on the fundamental ma&iix. wheref = arctan(eiz[1]/e12[0]). After the epipolee;; has
Similarly, two epipoles €;5 and e3;) on images 1 and 3 been transformed to lie on theaxis, we need to move epipole
based on the fundamental matd; can also be obtained. e;3 on they-axis. This can be obtained by a skew operation:
The image rectification process is to transform the images
such that the epipoles in the transformed images are at the
infinity either on thez-axis or on they-axis. In the usual
two view stereo case, the epipoles of the transformed images
are at the infinity point1,0,0)7. For three view stereo, thewhere s = —¢[0]/¢[1], andt = (¢[0],¢[1],1)T is the trans-
epipoles for the transformed left and right image pair will be d&rmed position ofe,5 after applying theT and R transfor-

cosf sinf 0
R = —sinf cosf 0
0 0 1

1
Ss=10 3)
0

SO = »
= O O
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mations. Now the two epipoles have been transformed on@me needs to have three pair of point positions before and after
the image axes with value, on thex-axis for the first epipole the transformation to determine the affine parameters. We can
and valuek, on they-axis for the second epipole. The nexuse the image centre and the two epipoles for this purpose.
step will be to shift the epipole positions to the infinity. Thidf we assume that the image centre does not change for this
transformation can be achieved using the following matrix: affine transformation, the parameterg; and a3 need to be

zero. Then we can use the two epipole positions to determine

1 0 0 . . .
K — 0 1 0 ai1,a12,a21 andags using the following transformation:
—1/ky —1/k, 1 { ' = anz+apy
att —
The combined transformation matrix is: y = anrtaxny

@) The position for the first epipole;s = (e12[0],e12[1],1)7

P1 = KSRT. will be transformed toe}, = (e},[0],0,1)T, where
This transformation will have the effect of shifting the twa:],[0] = |le12]|. Similarly, the position for the second epipole
epipoles in the reference image to the infinity on two orthogyz = (e13[0],e13[1],1)T will be transformed toe}; =
onal coordinate axes. Note that the value9of, k, andk, (0,€}5[1],1)7, wheree);[1] = |leis||. By solving two sets

are obtained from the immediate previous transformation opf linear equations, the affine parameters can be obtained as:
eration. This sequence of transformation to move the epipoles

C e . . . . ayp = —”912” . 613[1]/d6t
to the infinity is shown in Figurg|2.
y 9 E] a1 = +||612H . 613[0]/d€ﬁ
az1 = +|lewsl] - e12[1]/det
a9 = —||813H . 612[0}/d6t

wheredet = e13]0] - e12[1] — e12[0] - e15[1]. After obtaining the
affine parameters, we have the following affine transformation
matrix A to move the epipoles on to the image axes:

a1 a2 0
A = a1 a2 0
0 0 1

After these, theK transformation can be used to bring the
epipoles to the infinity. By using the affine transformation
method, we have the combined transformation matrix:

P; = KAT. (6)

Figure[3 illustrates the process of moving the epipoles to

Fig. 2. The transformation process for moving the epipoles in the referentchee |nf|n|ty using the affine transformation methods.

image to the infinity. The rotation transformation moves epipsje on to
the z-axis. The skew transformation moves the epipgg on to they-axis.
Then theK transformation moves the two epipoles to the infinity.

We can also apply the skew transformation immediately
after theT transformation so that the two vectors formed from
the image centre and the two epipoles are perpendicular to
each other. The parameterfor the skew transformation in
this case can be obtained using the method to be described
in Section[1I-B.3. Then a rotation transformation can be
applied to make the epipoles lie on the image axes. This

To infinity

e
is then followed by theK transformation. The combined C1 3
transformation process will then be:
P, = KRST. 5) . el

2) Affine Transformation MethodAn alternative way of Fig. 3. Another transformation process to move the epipoles to the infinity.
aligning the epipoles in the reference image to the imaq e affine transformation moves the two epipoles on to the two image axes.
. . . . en theK transformation move the epipoles to the infinity.
axes is to choose firstly an affine transformation such tha
the two epipoles are on the images axes. The general affin

o 93) Vanishing Points MethodVanishing points have been
transformation is given by:

used for 3D reconstruction from images, matching perspective
' = ay;x+apy+as views [18], shape from texture [19], and plane rectifica-
Yy = as1T + asy + ass tion [20], [21].



4 IMAGE AND VISION COMPUTING, VOL.21, NO.3, PP.259-269, MARCH 2003

Here we draw the connection that epipoles in the origintie rectification process is minimised. The image difference is
image space are vanishing points for parallel lines in the reatalculated as the sum of the distances for the four corners of
fied image space. We use the vanishing points property in tiie rectified and the original images. For each iteration of the
section for a new application — trinocular image rectificatiooinimisation process, a pair of intermediatendv values is
In our situation, we have two epipoles on the image plane o$ed for obtaining the projection matrX; which is used for
the reference image. These two epipoles, which are treatedrassforming the four corners of the original image. Then the
vanishing points (as epipolar lines passing through epipolesiym of the distances for the four corners of the rectified and
define the vanishing lind = (I1,1,,13)7. The following the original images can be calculated.
perspective projection matrix which is constructed from the After the minimisation process, a pair af and v values
vanishing line| transforms parallel lines into converging(which definesT) and also théP; matrix are obtained. This

lines [19]: P, matrix will be used to rectify the reference image.
1 0 O We can carry out another search wfand v after theP,
P=|0 1 0 ]. (7) matrix has been fixed. For this round of optimisation, the
i 1o I3 P; remain unchanged, but just search through d¢hand v

values so that the sum of the distances for the four corners of

inal image, the epipolar lines passing through each of itfee rectified and the ongma! images is mlnlmlsed._ I_:|g@re 4
epipole become parallel, and the positions of the two epipol820Ws the effects of adjusting the v values to minimise
are at the infinity. The positions of the transformed epipold@€ changes of the rectified images. Figiire 4(a) is the result
after theT and P transformation are atn — PTe;, — obtained W!thout thm,v optimisation. Elgur{]4(b) shows the
(u1,v1,0)T andn = PTej; = (u2,v2,0)T. The two sets result o_btam_ed Wlth theu, v optlr_nlsa_non. There are more
of epipolar lines are usually not perpendicular to each othRiaCck pixels in Figurg J4(a) than in Figufé 4(b). The original
after this perspective transformation. We then need to appifRUt images are shown in Figure 6.
skew transformation such that the two sets of epipolar lin
are orthogonal to each other. ) o ) )
The parametes in the skew matrix needs to be estimated CIVeN the projection matri¥, for the reference view and
using the condition that the skew transformation makes tH¥ tWo fundamental matricds,, andF;, the transformation
two vectorsm andn orthogonal to each other. The conditiof the other two views can be obtained. LBt and P
says that the dot product 68m) and (Sn) needs to be zero. be the transformation matrices to rectify view 2 and view 3

After applying the projective transformatida on the orig-

o Projection Matrices for Two Other Views

That is: respectively. It is proved in [1] that iF'» is factorised as
(Sm) - (Sn) = 0 @8) [e12 x Mo], whereM;, is a non-singular matrix, then
— T
where S is defined in Equation| {3). Expanding Equatif (8) Py = (I+Pepa )1;11;/112
we obtain = (I+(1 0 0)'a’)P1Mi,
= CZP1M12

2
V1028° + (U1v2 + ugv1)S + ugug + v1ve = 0.
172 (urv2 + uaty) 1z e wherea = (a1, as, a3)” and

Using the known positions ofn and n, we can obtain the

solutions fors from the above equation. There are usually two C, — 0 1 0
. . 2 =

solutions fors. The one with the smaller absolute value should 0 0 1

be used in order to reduce the amount of image transformation.

After applying theSPT transformation, each set of epipolar Using the method described in [1], the, a2 and a3
lines become parallel, and the two sets of epipolar lines afelues iNC, can be estimated using least-squares technique.
orthogonal to each other. We then need to rotate the imageldtereforeP» can be calculated fron®2P1M;2. Matrix P
that the epipolar lines are along the image axes. This rotatifll transform the epipolees; in view 2 into the infinity.
matrix R is obtained using a similar procedure as describddherefore the original epipolar lines in view 2 can be made
in Section1-B.1. Therefore the combined transformation fdg#arallel to the image-axes. The corresponding epipolar lines

a1 + 1 as as

the reference image can be obtained as after transformation between view 1 and view 2 also lie on
the same horizontal scanline.
P, = RSPT. 9) Similarly the transformation matri®; for view 3 can be

4) Optimising Image Translation:The « and v values oibtained fromF3 and matching points between view 1 and
mentioned at the beginning of Sectipn 1-B.1 are taken Y&€W 3 as:

the centre of the reference image, iwe.equals half of the P; = (I+Pie;3b")P1My3
image column numbers and equals half of the image row = I+0 1 0)Tp")P;Mi;
numbers. The rectified reference image obtained by applying = C3P1Mi3

the transformation matri®; is usually different from the orig- T

inal image. Our intention is to minimise the image differencdnereb = (b1, b2,b3)" and

before and after the rectification process. 1 0 0
We can apply a minimisation process to search forihe Cs3=| b1 ba+1 b3

and v values so that the image difference before and after 0 0 1
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Fig. 4. (a) Rectified reference image without the optimisation ofuthe values. (b) Rectified reference image with the optimisation ofithe values.

The values fob,, b, andb; can be obtained similarly as, a, b) Solve a set of homogeneous equations using sin-
and a3. Matrix P3 will transform the epipolezs; in view 3 gular value decomposition (SVD) to obtain the
into the infinity. Therefore the original epipolar lines in view 3 trilinear tensor.
can be made parallel to the imageaxes. The corresponding c) Calculate the fundamental matrics, and Fi3
epipolar lines between view 1 and view 3 lie on the same from the trilinear tensor.
vertical scanline. 3) Uncalibrated trinocular image rectification:
Using the three transformation matric#s, P, and Py, a) Construct the transformation mati% for the ref-
the three original images can be rectified. When resampling erence image using one of the methods described
the input images for rectification, bilinear interpolation can be in SectionT-B.
used. b) Compute the other two transformation matri€gs
The process of obtainingr and b using least-squares andP; as described in Sectign T}C.
technique involves minimising the distance of the matching c) Apply the three transformation matricd;, P,
points in a pair of views. The results of this is that the average and P to the three images in view 1, view 2 and
disparities for the rectified images are minimised. However, view 3 respectively to obtain the rectified images.
this process may have the effect that some of the image regions
are cut off in the rectified image. To reduce this effect, we I1l. EXPERIMENTAL RESULTS

can carry out a shift search similar to those mentioned in_, . . I .
. . ) This section shows some of the rectification results obtained
Sectior[TI-B-4. The search needs only to be carried out in the.

horizontal direction (the: value) for view 2 and in the vertical using our new methods described in previous sections. A
direction (thev value) for view 3. The objective function of variety of real images have been tested.

v varre) ot Vit . J . For each triplet of images we have the left-right pair of
the search or optimisation is again the sum of distances f%r d lef ir of i Wi h hod
the four corners of the rectified and the original images TI aggs Zn. eSt-to_p patr Of 'mages. e Cﬁm uie the metho

: . . .2 déescribed in Sectio or estimating the trilinear tensor
effect of introducing of this search can be shown in Flgmre%e LG g

After the tri lar i ification. fast st chi r estimating the invariants in three images using six points
er the tnnocular image rectinication, 1ast stereo matching, j y,q, calculating the fundamental matrices for the pairs of

_algorithms can be used to derive disparities from the rectifig ages in the triplet. We can also use Zhagls method for
images [22], [9)]. estimating the fundamental matrices directly for each pair of
images [15]. After we have obtained the fundamental matrices
D. Algorithm Steps for the left-right and the left-top pairs of images, we can
The steps of our glgqrithm for the trinocular image rectifitr—religﬁggtrig/no;lg ct)rr]ifhrr: SC tification process using our trinocular
cation are the following: Figure[§ gives an image triplet (left/reference in (b), right
1) Automated sub-pixel features matching is carried out fgy (c) and top in (a)) with some epipolar lines overlaid.
the image triplet. In the reference image, there are two sets epipolar lines
2) Obtain fundamental matrices. The fundamental matricsﬁssing through two epipo'es_ F|g 7 ShOWS a sequence Of
can either be obtained through the trilinear tensor @fansformed images using the vanishing points rectification
through projective invariants or estimated directly fronethod. Figuré]7(a) is the initial epipolar lines (the same as
image matching points. Here we list the main stepsown in Figuré p(b)). Figufg 7(b) is the image obtained after
through the trilinear tensor method: applying thePT transformation. After this transformation, the
a) Image coordinate scaling and translation such thepipolar lines in each set become parallel to each other. But
the centroid of all given matching coordinates is ahe epipolar lines in different sets are not orthogonal to each
the origin, and the average distance of a matchiragher. Figure[]7(c) is the result after a skew transformation
point from the origin isy/2. which makes the epipolar lines in the two set orthogonal
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(b)

Fig. 5. (a) Rectified right image without the optimisation of thealue. (b) Rectified right image with the optimisation of thesalue.

to each other. Figurg] 7(d) shows the final rectification result IV. CONCLUSIONS
after an rotation transformation which aligns the two sets of |y this paper, several novel methods for rectifying uncali-

epipolar lines to the image axes for the reference image. Thgyted trinocular images has been presented. The transforma-
rectification results for the image triplet are given in Figure §on matrices applied to the original images are constructed
Figure[8(b) is the rectified reference image with two sets ghsed on the epipolar geometries among the images triplet.
epipolar lines orthogonal to each other and parallel to thgyee novel methods have been proposed for estimating the
image axes. Figurg] 8(c) is the rectified image for the rightctification matrix for the reference image including the
image with horizontal epipolar lines. Figure 8(a) is the rectifieghtation and skew method, the affine transformation method,
image for the top image with vertical epipolar lines. and the vanishing points method. Real images have been tested

Figure[9 shows a triplet of real images from the Calibrated'd the results validate the new methods.
Imaging Lab (CIL) Stereo dataset from CMU with epipolar
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(b) | (©)

Fig. 6. Epipolar lines overlaid on the original trinocular images.

Fig. 7. Rectification steps for the reference image using the vanishing point method. (a) Original image with epipolar lines overlaid. (b) Image obtained
after the translation and projection transformations. (c) Image obtained after skew operation on image in (b). (d) Rectified reference image after a further
rotation operation. Epipolar lines are becoming horizontal or vertical.
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Rectified trinocular images for those shown in Figre 6. Epipolar lines are becoming horizontal (left-right) or vertical (left-top).
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(b)
Fig. 9.  Original trinocular images and imaging positions. (a) The top image with epipolar lines overlaid; (b) reference image with epipolar lines overlaid.
Two sets of epipolar lines in the horizontal direction and vertical direction are shown; (c) the right image with epipolar lines overlaid; (d) illustration of
the imaging geometry for this example. The information shown in the drawing (d) is not used during the rectification process. (CIL stereo images from the

Calibrated Imaging Laboratory of the Carnegie Mellon University.)
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Fig. 10.  Rectified trinocular images for those shown in Figdre 9. Epipolar lines are becoming horizontal (left-right) or vertical (left-top).

Fig. 11. Epipolar lines overlaid on the original trinocular images.
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