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Abstract

Optical flow or image motion estimation is important in the area of computer vision. This
paper presents a fast and reliable optical flow algorithm which produces a dense optical flow
map by using fast cross correlation and 3D shortest path techniques. Fast correlation is
achieved by using the box filtering technique which is invariant to the size of the correlation
window. The motion for each scanline or each column of the input image is obtained from
the correlation coefficient volume by finding the best 3D path using dynamic programming
techniques rather than simply choosing the position that gives the maximum cross correlation
coefficient. Sub-pixel accuracy is achieved by fitting the local correlation coefficients to a
quadratic surface. Typical running time for a 256x256 image is in the order of a few seconds
on a 85MHz computer. A variety of synthetic and real images have been tested, and good
results have been obtained.

Keywords: Motion estimation, Optical flow, Image motion, Dynamic programming, 3D
shortest path, Sub-pixel accuracy, Fast cross correlation, Similarity measure.

1 Introduction

Optical flow or image motion is the displacement of each image pixel in an image sequence. Image
motion estimation is a fundamental issue in low-level vision and is used in many applications
such as robot navigation, object tracking, image coding, and structure reconstruction. There
are several types of methods for estimating image motion or optical flow [1]. These methods
can be divided into correlation-based [2, 3, 4, 5], energy-based [6], phase-based [7], and gradient-
based [8, 9, 10, 11] methods.

Anandan described a hierarchical framework for the determination of dense motion fields
from a pair of images [2]. It is based on a Laplacian pyramid and uses a coarse-to-fine matching
strategy. Quénot presented an algorithm for the computation of optical flow using orthogonal
dynamic programming [12]. The principle is to minimise a sum of square of differences (SSD)
between a pair of images. The dynamic programming is performed alternatively on horizontal and
vertical image stripes while reducing the stripe spacing and width. Liu et al presented a survey of
different approaches toward the goal of higher performance and presented experimental studies on
accuracy versus efficiency trade-offs [13]. Camus presented algorithms that perform correlation
search over time instead of over space to achieve linear performance [14]. His method produces
quantized motion estimates. Barron et al investigated the accuracy, reliability and density of
velocity measurements of a number of regularly cited optical flow techniques [1].

It is our intention in this paper to address some of the efficient and reliable implementation as-
pects of image motion estimation algorithms by using fast correlation and dynamic programming
techniques. The method described in this paper is correlation based. The novel aspects of our
method are: (1) development of fast algorithms for the calculation of similarity or dissimilarity
measures for motion estimation purpose; (2) the use of dynamic programming techniques to find
a shortest path in the 3D correlation coefficient volume for each of the scanlines or columns of
the input image. This means the motion vectors are obtained by optimal matching for the entire



scanline or column rather than searching for the maximum correlation coefficient for each point
independently. Sub-pixel accuracy motion estimates are obtained by using a simple formula for
local extreme calculation.

The rest of the paper is organised as follows: Section 2 reviews the box filtering techniques and
derives our fast correlation method for motion estimation. The detailed optical flow estimation
method is described in Section 3. Section 4 shows the experimental results obtained using our fast
image motion estimation method and several other regularly cited methods applied to a variety
of images. Section 5 discusses the reliability and computation speed issues of our algorithm.
Section 6 gives concluding remarks.

2 Fast Similarity Measure

The most commonly used similarity measure for matching is the cross correlation coefficient. It
is popular because it corresponds to optimal signal-to-noise ratio estimation [15]. The sum of
absolute differences (SAD) and the SSD, both dissimilarity measures, have also been used. Their
usage is usually justified on the grounds that they are easy to implement and use less computing
power, especially when they are used in the fast sequential similarity detection algorithm [16, 17].
It has also been shown that the zero mean normalized cross correlation (ZNCC) and the zero
mean sum of squared differences tend to give better results in terms of image matching [18, 19,
20, 21]. The estimate of ZNCC is independent of differences in brightness and contrast due to the
normalization with respect to mean and standard deviation. We will use the ZNCC coefficient
as the similarity measure between candidate matching areas in the process of describing our fast
algorithm. We will then extend the algorithm for fast calculation of dissimilarity measures using
SSD and SAD.

Direct calculation of ZNCC is computationally expensive. Faugeras et al used a recursion
technique and hardware implementation to obtain real time correlation for stereo matching [19].
In [22, 23], Sun described a method for fast calculations of cross correlation for stereo matching,.
Here we extend the recursive technique for motion estimation purposes.

Let fmn and fr,, be the intensity and local mean of an M x N image f at position (m,n).
We also have similar definition for a second image g. The ZNCC of two local windows inside f
and g can be written as follows:
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and i,j are the image row and column indices. dg,d, are the window shifts within the search
region in the second image; K and L define the correlation window size. f and g are the mean
values within the local windows. From Eqgs. (2)-(4) it can be seen that one needs to have fast
ways to obtain the mean and variance of a window and cross correlation value of two windows in
order to achieve fast calculation of Eq. (1).



2.1 The Box Filtering Technique: Review

McDonnell described an efficient box-filtering procedure for local mean calculation of an im-
age [24]. McDonnell’s technique requires only four operations per output pixel and is independent
of the box size. The principle of the technique is as follows (a detailed description can be found
in [24]). A (2K + 1) x (2L + 1) box filter is simply:

- i+K  j+L
fi,j:(2K+1 2L + 1) 2. 2. fmn (5)
m=t—K n=j—L

where the denominator is a constant. Each output row of f is calculated using a long window
(with size N(2K + 1)) in f. A buffer IBUF(N) is maintained for this window. Each element of
IBUF is the sum of the pixels in the corresponding column of the window. That is

i+ K

IBUF(j)= > fmy (6)

m=i—K

After a row of f has been calculated, the window moves down one row, and IBUF is updated
by adding the new row and subtracting the old one.
Each fi,j is calculated using a box in the long window. A value ISUM is stored for each box
position given by
J+L
ISUM = Y IBUF(j) (7)
n=j—L

As the box moves, ISUM is updated by adding in the new IBUF value and subtracting out the

old. Thus
ISUM

Q2K + 1)(2L + 1)

fig= (8)
When the first row of f is calculated, IBUF must be initialized explicitly. Similar initialization
must be performed for the first value of each row of ISU M.

2.2 Fast Calculation of Variance

Pixel variance within a local window can be computed quickly at the same time as the pixel mean
is computed. Equation (9), which can be obtained by rearranging Eq. (3), demonstrates this.
The only requirement is a second buffer for accumulating the square of the intensity values as the

pixel means are calculated. The first term 3 "H5 ZJ i+ 1 f2 , at the r.hs. of Eq. (9) can be

obtained during the same pass as one calculating the local mean f. The variance of pixels within
the box is calculated using Eq. (9) as the mean and the square terms are available.
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The local mean and variance of input images, that are required to produce reliable similarity
measures, can therefore be computed in an efficient manner.



2.3 Fast Cross Correlation for 2D Search

Techniques similar to those described in Section 2.2 can be used to compute the cross correlation
term in Eq. (1) very efficiently.
Rewriting Eq. (2), we have:
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covijd,d, (f;g) is the covariance measure for a window centered at (4,7) in the first image and a
window centered at (i 4 dg,j + dy) in the second image. Eq. (10) is the numerator of Eq. (1). d;
and dy vary from —w, to +w; and —w, to +w, respectively, where w, and w, define the size of
the search region for optical flow estimation.

In the traditional way of obtaining the correlation coefficient, a point is fixed in the first
image and d, and dy are varied in the range of [—w,, +w,] and [—w,, +w,]. Its complexity is
O(MND,D,(2K+1)(2L+1)), where Dy(= 2w, +1) and D,(= 2wy +1) are the maximum search
ranges in the X- and Y- directions. Direct calculation of Eq. (10) has almost (2K + 1)(2L + 1)
redundancies. The dark shaded region in Fig. 1 shows the redundant calculations. pl and p2
are two overlapping windows in the first image. ¢l and ¢2 are two overlapping windows in the
second image. pl correlates with g1, and p2 correlates with ¢2. It is possible to compute the cross
correlation using only a few multiplications by exploiting techniques similar to those described in
Section 2.2. The first term of the r.h.s. of Eq. (10) is the summation of the pixel multiplications
over the correlation windows with the second window shifted d,, d, pixels. The multiplication of
Jmn X Gm+dy m+d, 18 used rather than ffnn in a manner similar to the process of calculating the
variance. The second term of the r.h.s. of Eq. (10) is a straight-forward calculation using the
available local mean values.
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Figure 1: Area of redundant calculation for neighbouring windows (overlapping region shown in
black) for two consecutive frames of an image sequence. pl and p2 are two overlapping windows
in the first image. ¢l and g2 are two overlapping windows in the second image. pl correlates
with g1, and p2 correlates with ¢2.

The cross correlation between the image f and the image g shifted by [d;, dy] is computed as
shown in Fig. 2. For each pair of d; and dy, a plane of correlation coefficients is produced. d
and dy can be varied over [—w,, +w,] and [—wy, +wy] to produce a correlation volume of size
MND,D,.
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Figure 2: Shifted images for fast cross correlation.

2.4 Other Similarity Measures

The fast algorithm described in the previous subsections can be easily adapted to efficiently obtain
the SAD and SSD measures by using the following equations:
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2.5 Complexity and Storage Requirements

The complexity of our algorithm is O(MND,D,). It is independent of the local window sizes.
The storage space needed for the correlation coefficients is in the order of M N D,D, floating
points. If SAD or SSD is used, the data type could be integer or short integer rather than
floating points.

2.6 Correlation Volume

The result of the correlation calculation described in Section 2.3 is a volume containing the
correlation coeflicients as shown in Fig. 3. The size of the volume depends upon the image size
M N and the motion search ranges D, and D,. Each pixel in the first image has D, D, correlation
coefficients in the corresponding search region in the second image. These coefficients are stored
in a 1D vector in the 3D volume as shown in Fig. 3. This vector represents the 2D search region
shown in the right hand side of the same figure. There are N such 2D search regions containing
the correlation coefficients in each horizontal scanline of the input image. These 2D regions can
be stacked together to produce a 3D volume of correlation coefficients with dimensions D,D,N
for each scanline of the image as shown in Fig. 4. This correlation volume will be used to obtain
motion vectors for this scanline using 3D shortest path method to be described in Section 3.1.

3 Motion Computation Strategy

3.1 Shortest Path in 3D Using Dynamic Programming

Some researchers choose the position that gives the maximum correlation coefficient within the
search region as the motion vector for a point in the first image. This does not take neighbourhood
information into account for motion estimation. We propose a new method which uses a 3D
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Figure 3: An illustration of the correlation volume obtained after using our fast correlation
method. The number of correlation planes equals the size of the search region D,D,.
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Figure 4: Correlation volume for each scanline. Each plane in the volume contains the correlation
coefficient values within a search region. There are N such planes for each scanline.

shortest path through the 3D correlation volume for each scanline of the input image to produce
a consistent set of motion vectors. This volume is one horizontal slice of the correlation volume
shown in Fig. 3 obtained in Section 2.3. The length of the volume is the same as the length of
the horizontal image scanline; the width of the volume equals the correlation search range D,;
and the height of the volume equals the correlation search range D,. Rather than choosing the
position which yields the maximum correlation coefficient in a search region, we find a shortest
path from left to right through the 3D correlation volume, giving the maximum sum of the
correlation coefficients along the path. The position of the path indicates the best motion vector
for this scanline. Because the path is continuous, the motion vectors obtained for neighbouring
pixels are more consistent with each other.

The best 3D path from left to right through the 3D correlation volume is found by using a
dynamic programming technique [25, 26, 27]. The best path gives the maximum sum of the corre-
lation coefficients along the path which satisfies certain connectivity and smoothness constraints.

Now we describe our new algorithm for the shortest path extraction in a 3D volume using
efficient dynamic programming techniques. For 1 < p < Dg, 1 < g < Dyand 1 <k <N, let
C(p, q, k) be the cost (or the correlation coefficient value) of the (p, ¢, k)th value in the 3D volume
of size D;DyN. The cost of a path P is defined as the sum of the costs along the path. We
maintain two arrays for the dynamic programming. Array Y (p,q, k) contains the accumulated
values and K (p, ¢, k) has the position which produces the local maximum value. When & = 1,

Y(p,q,1) = C(p,q,1) (13)

i.e. the first plane of Y is a copy of the first plane of C'. For the remaining planes (kth plane) of
the volume, the Y values at each position is obtained using the following recursion:

Y E)=C(p,q. k Y g+t k—1 14
(p, g, k) (P, g, )+57t:|51§a1§t|<1 (p+s,q+ ) (14)

The values of s,¢ which achieves the maximum in Eq. (14) during each iteration is stored in K.

K(pa q, k) = argmaxs,t:|s\<1,\t|<1Y(P +s,q+1t,k— 1) (15)



The values stored in volume K are used to backtrack along the best path from the maximum
value in the last plane of Y. After the Y and K volumes have been obtained, we can start the
backtracking process to obtain the 3D shortest path. One 3D path is extracted for each horizontal
scanline of the input image.

3.2 Other Volume Shapes

We have described our method for motion estimation for each horizontal scanline of the input
image using 3D shortest path technique described in the previous subsection. Other approaches
of constraining the motion estimation can also be used. We can also construct a 3D volume for
each column of the input image as illustrated in Figure 5(a). A 3D shortest path from top to
bottom can be obtained in this volume using similar technique described earlier. The size of this
3D volume is D, D, M.

The motion vectors obtained from a 3D volume, either for each horizontal scanline or each
image column, does not have constraints from neighbouring scanlines or columns. That is each
neighbouring scanline or column are processed independently, although the similarity calculation
stage has certain windowing effects because the similarity measures are calculated based on pixels
from multiple scanlines and columns. To constrain the motion estimation in both direction, we
can obtain a “4D” surface from the 4D volume as shown in Figure 5(b). This “4D” surface
are actually collections of multiple 3D paths. The objective here is to obtain a maximum “4D”
surface which gives the maximum summations of correlation coefficients. The approach to obtain
this “4D” surface may be similar to the 3D maximum surface technique developed by Sun for
stereo matching presented in [23].
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Figure 5: (a) Correlation volume for each column. Each plane in the volume contains the corre-
lation coefficient values within a search region. There are M such planes for all the points in a
column. (b) Correlation volume for all the scanlines. This 4D volume contains multiple (M) 3D
volumes.

3.3 Sub-pixel Accuracy

The result of shortest path extraction produces motion estimation up to pixel level accuracy. Sub-
pixel accuracy can be obtained by fitting a second degree surface to the correlation coefficients
in the neighbourhood of the motion vector and the extrema of the surface can be obtained
analytically. This sub-pixel motion measurement is an estimate obtained from a number of
neighbouring pixel resolution measurements. The general form of the second degree surface is:
S(z,y) =A-224+B-zy+C-y>+ D-z+ E-y+ F. The maximum can be found where the slope



is zero in the quadratic equation. The sub-pixel position can be found by solving the following
equation:

2A-z + By + D =0 (16)
Bz + 2C-y + E = 0

Solving Eq. (16) we have:
z= (BE-2CD)/(4AC — B?) (17)
y= (BD—-2AE)/(4AC — B?)

When estimating the coefficients A, B,C, D, E and F of function S(z,y), one usually needs to
solve a set of over-determined linear equations. The solution usually involves matrix operations
such as inversion. A quick way of obtaining the coefficients of S(z,y) is necessary to make
sub-pixel accuracy motion estimation practical.

If the shortest path passes position (p,q) at plane k of the volume, we use the nine correlation
coefficient values in the neighbourhood of (p,q) as input. We have derived the following formula
for the calculation of A, B,C, D, E and F using nine neighbouring values.

(A= (b(,,,) = 2b by, y+ by —2biy + by by — 260y + b(+,+))/6
B = (bm) =) = by F bt,4))/4
) C= (b, +be_y+b_y—2b y—2b..y)—2b y+b_ yy+b.4)+b 4))/6
= (b o) + 0oy = by F b = by b)) /6
= (=0 0) =By = By F b4y H D) b)) /6
( F'= (=b,y+2b )= b, y+2b y+5b..y+2b .y — b )+ 2b. 4y — b(+,+))/9(18)
where
(b_y = S(p—1,4-1)
by = Sl .9-1)
b,-) = Slp+1,9-1)
by = Slp-1,9 )
§ by = Sl o.q ) (19)
byy = Slp+lq )
by = Slb—-1lg+1)
byy = Sl ,q+1)
( b = Sle+1,¢+1)

ie. b(*’*)' s are the values of the local correlation coefficients. One can, therefore, use Eq. (18)
to obtain the coefficients of function S(z,y), and then use Eq. (17) to calculate the sub-pixel
accuracy motion vector. For some points in the input image, the local shape of the second degree
surface S(x,y) may not be well behaved. The maximum position obtained using Eq. (17) may
not be near the pixel position (p,¢). In this case, we discard the sub-pixel estimate and use the
original motion estimate at pixel resolution.

3.4 Algorithm Steps
The steps of our proposed new algorithm for fast image motion estimation are:

Perform image motion estimation using the method described in Sections 2.1-3.3 which
includes:

(a) Performing fast ZNCC (or use SSD or SAD) to obtain the correlation coefficients;

(b) Building a 3D correlation coefficient volume for each scanline (or each column) of the
image;

(c¢) Using dynamic programming technique to find the best path in the 3D volume, which
will then give the motion vectors;



(d) Fitting the correlation values in the neighbourhood of the motion vector obtained in
the previous step to a surface to obtain sub-pixel accuracy.

4 Experimental Results

This section shows some of the results obtained using our motion estimation method. Compar-
isons with some of the commonly cited techniques are also made. A variety of images have been
tested, including synthetic images and different types of real images.

4.1 Synthetic Images

Fig. 6 shows the results of different techniques on the image sequence Yosemite. The first two
images in the top row are frames 9 and 10 in the sequence. The third picture in the top row
is the correct optical flow field. The results of Fleet’s, Horn’s and Lucas’ techniques give sparse
flow fields, while other techniques give dense optical flow. The techniques producing reasonable
results for the top region of the image are Singh’s and ours.

Table 1 shows the errors, flow density, number of image frames used and the time that several
techniques used for calculating the flow field. The errors in Fleet’s, Horn’s and Lucas’ techniques
are small because they only use the reliable flow estimates. Uras’ technique and our technique give
smaller errors and our technique gives the higher computation speed. But Uras et al’s technique
does not perform well at the top region of the image, and 15 frames of the sequence are required.
The test were run on a 85MHz Sun SPARCserver1000 running Solaris 2.5. All the programs
apart from the author’s were obtained from the ftp site at ftp://csd.uwo.ca/pub/vision. Our
algorithms are implemented using the C language. The typical running time for our new algorithm
on a 256256 image is in the order of seconds. The web page given in Section 7 can execute the
algorithm on images supplied by readers.

Table 1: Results for the image sequence yos.

Average | Standard Frames User
Technique error | deviation | Density used time
Anandan 16.37 13.46 | 100.00% 2 | 849.79s
Fleet 5.28 14.33 30.64% 15 | 426.13s
Horn 5.48 11.30 32.88% 15 | 29.62s
Lucas 4.48 12.16 39.78% 15 | 32.94s
Nagel 12.70 16.68 | 100.00% 15 | 205.50s
Quenot 9.93 16.16 | 100.00% 2 | 182.63s
Singh 12.09 15.86 | 100.00% 3 | 339.36s
Uras 8.92 15.61 | 100.00% 15| 17.58s
Sun 9.21 16.16 | 100.00% 2| 14.35s

4.2 Real Images

Four real image sequences have also been tested, and good results have been obtained. Fig. 7
shows the results of several techniques on the four real image sequences: SRI Trees, NASA
Sequence, Rubik Cube and Hamburg Taxi provided in [1].

5 Reliability and Computational Speed

The reliable results of our algorithm are achieved by applying the combination of the following
techniques: (1) The ZNCC similarity measure is used, which is independent of differences in
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Figure 6: The optical flow results of different techniques on the Yosemite sequence. The first
two images in the first row are the frames 9 and 10 in the sequence, and the third picture in the
first row shows the true optical flow. The name of each technique is given below the corresponding

picture.

brightness and contrast due to the normalization with respect to mean and standard deviation.

Similarity measures using SAD or SSD

are not

which are relatively cheap computationally,

bl

The correlation coefficient volume is

)

2

(

used as input to the 3D dynamic programming stage rather than directly using image intensity
values. In our approach, information from neighbouring search regions have been put together

for motion estimation. (3) A dynamic programming technique is used to find a 3D path in the
correlation volume. Estimating the motion field by finding the maximum correlation value will

independent of differences in brightness and contrast.

tend to produce outliers. These outliers are eliminated by using dynamic programming technique

which gives a more smooth path. The 3D shortest path approach also has the ability to fill small
holes in the motion image resulting from areas of low texture content. The algorithms presented
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Figure 7: The results of different techniques on four of the commonly used images sequences.
(Images courtesy of Barron, Fleet and Beauchemin [1].)

in this paper however do not model occlusions.

Factors contributing to the fast speed of our algorithm include: (1) Fast ZNCC is used. Direct
calculation of cross correlation for every point on the image is computationally expensive. The
fast cross correlation between two images are achieved by fixing one shift for every points on the
second image and calculating the cross correlation in the way similar to that when one calculates
the image variance. This way the redundant computation is eliminated and fast computation is
achieved. (2) The dynamic programming technique for obtaining the 3D shortest path is also
computationally efficient. (3) A simple formula is used for sub-pixel motion estimation after the
initial motion vectors have been obtained in the 3D dynamic programming stage.
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Figure 7:  (cont’d) The results of different techniques on four of the commonly used images
sequences. (Images courtesy of Barron, Fleet and Beauchemin [1].)

6 Conclusions

We have developed a fast and reliable image motion estimation method using fast correlation
and 3D shortest path techniques. The algorithm produces a reliable dense motion vector field
from just two successive images. The fast cross correlation method was developed from the box-
filtering idea. The motion vector for each scanline or column of the input image is obtained by
finding a 3D path using a dynamic programming technique in the corresponding 3D correlation
coefficient volume. Sub-pixel accuracy is achieved by fitting a quadratic surface using the corre-
lation coefficients values at the neighbourhood of the result after the 3D shortest path extraction
stage. The typical running time for a pair of 256x256 image is in the order of a few seconds.
The algorithm is implemented on standard computers, and no special hardware is used. The
algorithm could be implemented in parallel since the processing in different parts of horizontal
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scanlines are independent of each other. The algorithm was shown to be fast and reliable by
comparing with several commonly cited techniques by testing on several different types of real
and synthetic images.

7 Web Demo

Interested readers may run our algorithm on the web using their own images. The web demo
address is at:

http://extra.cmis.csiro.au/IA/changs/motion/
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