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Abstract

This paper presents a fast and reliable stereo match-
ing algorithm which produces a dense disparity map
by using fast cross correlation, rectangular subregion-
ing (RSR) and 3D maximum-surface techniques in a
coarse-to-fine scheme. Fast correlation is achieved by
using the box-filtering technique whose speed is invari-
ant to the size of the correlation window and by seg-
menting the stereo images into rectangular subimages
at different levels of the pyramid. By working with rect-
angular subimages, not only can the speed of the cor-
relation be further increased, the intermediate memory
storage requirement can also be reduced. The dispar-
ity map for the stereo images is found in the 3D cor-
relation coefficient volume by obtaining the global 3D
maximum-surface rather than simply choosing the po-
sition that gives the local maximum correlation coeffi-
cient value for each pixel. The 3D maximum-surface
is obtained using our new two-stage dynamic program-
ming (TSDP) technique. There are two original con-
tributions in this paper: (1) development of the RSR
technique for fast similarity measure; and (2) devel-
opment of the TSDP technique for efficiently obtaining
3D maximum-surface in a 3D volume. Typical running
time of our algorithm implemented in the C language
on a 512×512 image is in the order of a few seconds on
a 500MHz PC. A variety of synthetic and real images
have been tested, and good results have been obtained.

Keywords: Rectangular subregioning (RSR), Fast
cross-correlation, Similarity measure, Stereo matching,
Coarse-to-fine, Pyramid, 3D Maximum-Surface, Two-
stage dynamic programming (TSDP), Sub-pixel accu-
racy.

1 Introduction

The correspondence problem in stereo vision and pho-
togrammetry concerns the matching of points or other
kinds of primitives such as edges and regions in two
or more images (in this paper, we just use two images)
such that the matched image points are the projections
of the same point in the scene. The disparity map ob-
tained from the matching stage may then be used to
compute the 3D positions of the scene points given the
imaging geometry.

Because of factors such as noise, lighting variation,
occlusion and perspective distortion, the appearances
of the corresponding points will differ in the two im-
ages. For a particular feature or a local window in one
image, there are usually several matching candidates
in the other image. It is usually necessary to use ad-
ditional information or constraints to assist in obtain-
ing the correct match. Some of the commonly used
constraints are: (1) Epipolar constraint: Under this
constraint, the matching points must lie on the corre-
sponding epipolar lines of the two images. For epipolar
rectified images, the matching points lie on the same
image scanlines of a stereo pair; (2) Uniqueness con-
straint: Matching should be unique between the two
images; (3) Smoothness constraint: Local regions of
the disparity map should be relatively smooth apart
from regions with occlusion or disparity discontinu-
ity; and (4) Ordering constraint or monotonicity con-
straint: For points along the epipolar line in one image
of the image pair, the corresponding points have to oc-
cur in the same order on the corresponding epipolar line
in the other image. In this paper, we assume that we
work on the epipolar rectified stereo images so we essen-
tially used the epipolar constraint. Other constraints
mentioned will be used in the dynamic programming
stage when obtaining the disparity map from the cor-
relation coefficient volume.

Matching techniques can be divided broadly into
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area-based and feature-based image matching, or a
combination of them. Area-based methods have been
applied successfully to aerial images where the sur-
faces vary smoothly (O’Neill and Denos, 1996) and
to other applications where stereo images have good
textures. They have the advantage of directly gener-
ating dense disparity maps but they tend to break-
down where there is lack of texture or where depth
discontinuities occur (Cochran and Medioni, 1992).
The feature-based approaches match more abstract fea-
tures, rather than matching texture regions in the two
images (Medioni and Nevatia, 1985; Ayache and Faver-
jon, 1985; Grimson, 1985). Feature-based methods
provide more precise positioning for the matching re-
sults. They are also more reliable than area-based
matching. Because of the sparse and irregularly dis-
tributed nature of the features, the matching results
must be augmented by an interpolation step if a dense
map of the scene is desired. If a feature-based method
is used, an extra stage is needed for feature detection
in the two images, which will no doubtly increase the
computational cost. Other types of stereo matching
methods such as pixel-based (Birchfield and Tomasi,
1999), diffusion-based (Scharstein and Szeliski, 1998),
wavelet-based (Kim et al., 1997), phase-based (Porr
et al., 1998), and filter-based (Jones and Malik, 1992)
have also been developed.

Lotti and Giraudon used a correlation based algo-
rithm with an adaptive window-size that is constrained
by an edge map extracted from the image (Lotti and
Giraudon, 1994a; Lotti and Giraudon, 1994b). They
presented results on aerial images. Intille and Bo-
bick (Intille and Bobick, 1994; Bobick and Intille,
1999) presented a stereo algorithm that incorporates
the detection of the occlusion regions directly into the
matching process. They developed a dynamic pro-
gramming solution that obeys the occlusion and or-
dering constraints to find a best path through the
disparity-space image. They also used ground control
points to eliminate sensitivity to occlusion cost. Xiong
et al (Xiong et al., 1996) presented a stereo match-
ing approach which integrates area-based and feature-
based processes. Wei et al proposed an intensity-
and gradient-based stereo matching using hierarchical
Gaussian basis functions (Wei et al., 1998). Fua (Fua,
1993) described a correlation based multi-resolution
algorithm which is followed by interpolation. Anan-
dan (Anandan, 1987) described a hierarchical com-
putational framework for the determination of dense
motion fields from a pair of images. A number of
researchers have used dynamic programming to solve
the matching problem globally along a pair of epipolar
scan lines (Lloyd, 1985; Gimel’farb et al., 1992; Bald-

win et al., 1990; Rojas et al., 1997; Bensrhair et al.,
1996; Geiger et al., 1995). There are other algorithms
which perform fast stereo matching (Fusiello et al.,
1997; Kolesnik, 1993; Banks et al., 1999). Sun (Sun,
1997) described a fast stereo matching method using
fast cross correlation and dynamic programming tech-
niques in a coarse-to-fine scheme. The dynamic pro-
gramming was applied to the correlation coefficients
matrix along the corresponding epipolar lines. All the
methods mentioned above did not consider the continu-
ity of neighbouring epipolar lines. Ohta and Kanade
used dynamic programming to match epipolar scan-
lines first and then improve the solutions iteratively
using edges (Ohta and Kanade, 1985). Cox et al pre-
sented a stereo matching algorithm using the dynamic
programming technique considering the inter-scanline
constraints (Cox et al., 1996). The method needs small
number of iteration and only approximates the global
solutions. Belhumeur presented a Bayesian approach
to stereo matching (Belhumeur, 1996). In his 2D im-
plementation, he first carried out dynamic program-
ming along epipolar lines to obtain initial etsimates of
the disparity. Then he performed an iterative step for
vertical smoothing.

Roy (Roy, 1999) and Roy & Cox (Roy and Cox,
1998) developed an algorithm for solving the N -camera
stereo correspondence problem by transforming it into
a maximum-flow problem. The minimum-cut associ-
ated to the maximum-flow yielded a disparity surface
for the whole image at once. The preflow-push lift-
to-front algorithm was used when they calculate the
maximum-flow. The average computational complex-
ity for Roy and Cox’s algorithm was O((MN)1.2D1.3)
(with image row and column numbers M,N and depth
resolution D) (Roy and Cox, 1998). Ishikawa and
Geiger also implemented the maximum-flow approach
for stereo matching that models occlusions, discon-
tinuities and epiplar line interaction (Ishikawa and
Geiger, 1998). Chen and Medioni (Chen and Medioni,
1998) presented a propagation type of algorithm simi-
lar to Ohta and Kanade’s method (Ohta and Kanade,
1985). The techniques they used included non-maxima
suppression, seed voxel selection and surface trac-
ing. There was no mentioning about the speed issues
in (Chen and Medioni, 1998). Yang and Yuille pro-
posed a non-linear filter for detecting disparity surface
in a 3D volume (Yang and Yuille, 1995). They first ap-
ply the filter to the 3D volume and then simply use
maximum-picking. Zitnick and Kanade presented a
volumetric iterative algorithm for stereo matching (Zit-
nick and Kanade, 1998; Zitnick and Kanade, 2000).
The algorithm updates the match likelihood values by
diffusing support among neighbouring values and in-
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hibiting others.
In this paper we will present two new techniques

for fast stereo matching. The first technique is for
segmenting stereo images into rectangular subimages
through a rectangular subregioning (RSR) process for
fast similarity calculation; and the second is for obtain-
ing a 3D maximum-surface in a 3D correlation coeffi-
cient volume for selecting the disparity. The disparity
is obtained from a 3D correlation coefficient volume
by using a two-stage dynamic programming (TSDP)
technique considering the continuity of the neighbour-
ing epipolar scan lines. The 3D maximum-surface ob-
tained using the TSDP technique can give global max-
imum summation of the correlation coefficients along
the 3D surface. Because the TSDP algorithm uses a
two-stage dynamic programming technique, the algo-
rithm’s complexity is linear with respect to the size
of the 3D volume MND. Furthermore, because the
algorithm works in the coarse-to-fine scheme, the com-
plexity of the disparity selection stage by using TSDP
is only O(MND′), where D′ is much smaller than D.
We will also address some of the other efficient and re-
liable techniques for fast stereo matching. The rest of
the paper is organised as follows: Section 2 proposes
our new RSR method for fast calculation of similar-
ity measure. Section 3 presents our new method for
fast stereo matching by finding the maximum-surface
in the 3D correlation volume using the TSDP tech-
nique. The detailed matching method is described in
Section 4. Section 5 shows the experimental results ob-
tained using our fast stereo matching method applied
to a variety of images. Section 6 discusses the relia-
bility and computation speed issues of our algorithm.
Section 7 gives concluding remarks.

2 Rectangular Subregioning for
Fast Similarity Measures

Similarity or dissimilarity is the guiding principle for
solving the stereo matching or correspondence prob-
lem. Corresponding features or areas should be sim-
ilar in the two images. Different similarity measures
have been used in the literature for matching, and
their performance and computation costs vary (Rech-
steiner et al., 1994; Aschwanden and Guggenbühl,
1992). The most commonly used similarity measure
is the cross correlation coefficient. It is popular be-
cause it corresponds to optimal signal-to-noise ratio
estimation (Rosenfeld and Kak, 1982). The sum of
absolute differences (SAD) and the sum of square dif-
ferences (SSD), both dissimilarity measures, have also
been used. Their usage is usually justified on the

ground that they are easy to implement and use less
computing power, especially when they are used in
the fast sequential similarity detection algorithm (Wu,
1995; Barnea and Silverman, 1972) and when pro-
gramming in the MMX instruction sets. Barnea and
Silverman (Barnea and Silverman, 1972) introduced
a class of sequential algorithms for fast image regis-
tration. They were designed to reduce computation
cost in matching procedures using minimum dissim-
ilarity measures like the sum of the absolute differ-
ences (SAD). Konecny and Pape (Konecny and Pape,
1981) reviewed image correlation techniques according
to photogrammetric and mathematical fundamentals.
It has also been shown that the zero mean normal-
ized cross correlation (ZNCC) and the zero mean sum
of squared differences tend to give better results (Wu
et al., 1995; Faugeras et al., 1993; Rechsteiner et al.,
1994; Aschwanden and Guggenbühl, 1992). The ZNCC
estimate is independent of differences in brightness and
contrast due to the normalization with respect to mean
and standard deviation. We will use the zero mean
normalized cross correlation coefficient as the measure
of similarity between the candidate matching areas in
this paper. But direct calculation of ZNCC is compu-
tationally expensive. Faugeras et al (Faugeras et al.,
1993) developed a recursive technique to calculate the
correlation coefficients which are invariant to the cor-
relation window size. Sun (Sun, 1997; Sun, 1998) used
box-filtering technique for fast cross correlation. The
following subsections describe methods for achieving
fast correlation on the whole image and our new tech-
nique of using rectangular subregioning for fast simi-
larity measure calculation.

2.1 Fast Cross-Correlation on the
Whole Images: Review

Let fm,n be the intensity value of an M×N image f at
position (m,n), where f is to be locally averaged into
f̄ , i.e. obtaining the local mean of the original image
within a box. We also have a similar definition for a
second image g. The zero mean normalized cross cor-
relation of two local windows can be written as follows:

C(i, j, d) =
covij,d(f, g)√

varij(f)×
√

varij,d(g)
(1)

where

covij,d(f, g) =
i+K∑

m=i−K

j+L∑
n=j−L

(fm,n−f̄i,j)(gm+d,n−ḡi+d,j)

(2)
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varij(f) =
i+K∑

m=i−K

j+L∑
n=j−L

(fm,n − f̄i,j)2 (3)

varij,d(g) =
i+K∑

m=i−K

j+L∑
n=j−L

(gm+d,n − ḡi+d,j)2 (4)

and i, j are the image row and column indices. d is the
shift of the window in the right image along epipolar
lines, and it indicates possible disparity values; K and
L define the correlation window size. f̄ and ḡ are the
mean values within the local windows. From Eqs. (2)-
(4) it can be seen that to achieve fast calculation of
Eq. (1), one needs to have fast ways to obtain the mean
and variance of a window and cross covariance values
of two local windows in two input images. Fast cal-
culation of local mean and variances can be achieved
using the box-filtering technique.

Rewriting Eq. (2), we have:

covij,d(f, g) =
i+K∑

m=i−K

j+L∑
n=j−L

fm,ngm+d,n −Wf̄i,j ḡi+d,j

(5)
W is the size of the correlation window which equals
(2K + 1)(2L + 1). Eq. (5) is the numerator of Eq. (1).
Direct calculation of Eq. (5) for every points on the im-
ages has nearly (2K + 1)(2L + 1) redundancies. Cross-
covariance of two images can be obtained using only a
few multiplications by exploiting techniques similar to
the fast calculation for the mean and variance by using
box-filtering. The first term of the r.h.s. of Eq. (5)
is the sum of the pixel multiplications over the corre-
lation window with the right image shifted d pixels in
the x- direction. This operation can also be performed
using the same box-filtering idea to achieve fast compu-
tation speed. The cross covariance calculation uses the
multiplication term fm,ngm+d,n instead of f2

m,n when
calculating the variance. The second term of the r.h.s.
of Eq. (5) is a straight-forward calculation using the
available local mean values.

The correlation of two windows in the two images is
performed along the same horizontal scan line. For any
point in the left image, if the search window is assumed
to be within [−w,+w] in the right image, then the value
of d in Eq. (5) varies from −w to +w. The traditional
way of obtaining the cross correlation is to fix a point
in the left image and vary d within [−w,+w] in the
right image to calculate the correlation coefficients. In
an algorithm for fast correlation calculation, one first
fixes on one particular d for all the points in the left im-
age and calculates the local cross correlation between
the whole left image and the whole shifted right image

of the amount d using box-filtering technique. After
this, for every point on the left image we have a local
cross correlation value for the shift of d. Then we in-
crease the number of d by 1, and repeat the process
of correlation calculation until the value of d has gone
through [−w,+w]. For each d, a plane of correlation
coefficients is produced. Putting all of these planes to-
gether we have a 3D correlation volume. The size of the
volume depends upon the image row and column num-
bers M,N and the maximum disparity search range
D(=2w + 1) as shown in Figure 1. The complexity of
the algorithm is O(MND). The storage space needed
for the correlation coefficients is in the order of 4MND
bytes if float data type is used.

Image
Rows

(M)

Image Columns (N)
Disp

ar
ity

(D
)

Figure 1: An illustration of the 3D correlation coeffi-
cient volume obtained after using the fast correlation
method. The grey plane in the middle of the volume
corresponds to the coefficients when d = 0. The size of
the volume is MND.

The fast algorithm described earlier can be easily
adopted to obtain the SAD and SSD measures effi-
ciently. By using the following equation rather than
using Eq. (1), the efficient SAD measure can be ob-
tained:

SADij,d(f, g) =
i+K∑

m=i−K

j+L∑
n=j−L

|fm,n − gm+d,n| (6)

Similarly, the fast SSD measure can be calculated using
the following equation:

SSDij,d(f, g) =
i+K∑

m=i−K

j+L∑
n=j−L

(fm,n − gm+d,n)2 (7)

2.2 Rectangular Subregioning (RSR)

Rather than work with the whole image during the
fast image correlation stage as described in the previ-
ous subsection, we could work with subimages to speed
up the correlation calculation further and reduce the
memory space for storing the correlation coefficients.
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As mentioned earlier, the computation complexity for
the fast image correlation step is O(MND) if we work
with the whole image.

If the input image is divided into R subimages or
rectangular subregions, the computation complexity
will be

∑R−1
i=0 (MiNiDi), where Mi, Ni are the row and

column numbers for the ith subimage or region, and
Di is the disparity search range over this subimage.
We call the process of segmenting the input images
into rectangular subimages as rectangular subregion-
ing (RSR). Because the disparity search range Di is
obtained in a much smaller region (MiNi), Di is ex-
pected to be smaller than D, which is obtained for the
whole image. Even when it is not much smaller, the
size of this region (MiNi) is much smaller than the in-
put image. It is anticipated that

∑R−1
i=0 (MiNiDi) will

be smaller than MND, especially when the disparity
changes a lot within the whole image.

Although there are some overheads when work-
ing with subimages, such as region segmentation and
house-keeping, the time saved during the correlation
stage is far greater than the time spent for region seg-
mentation and house-keeping. Another advantage for
working with subimages is its smaller memory usage.
As mentioned earlier, some memory space is needed to
store the correlation coefficients. In the case of work-
ing with one whole image, the memory space needed
is in the order of 4MND bytes. While in the case of
working with subimages, the memory space needed is
in the order of maxi(4MiNDs

i ), because the memory
for each subregion is dynamically allocated and freed,
where Ds

i is the disparity search range for a particular
horizontal stripe starting from the left to the right of
the image.

2.3 Rectangular Subregioning Process

Now we will describe our fast method in more detail
for segmenting an image into rectangular subregions for
fast similarity calculation. Because the shapes of the
search window and the input images are all rectangular,
the regions of subimages need to be rectangular for
efficient operation.

The method that we developed for segmenting an
image into rectangles are in the line of region split-
merge techniques. The input for this segmentation
step is the intermediate disparity map obtained by pro-
jecting and interpolating the result from the previous
pyramid levels. If the current level is at the top of the
pyramid, the current disparity map can be set to zero
if there is no prior disparity information. If there is an
initial disparity map, it can be used as the input for
this segmentation step. The coordinate of the dispar-

ity map is the same as the left image if the left image is
taken as the reference; otherwise, the coordinate of the
disparity map is the same as that of the right image.

The input image is first divided into thin horizon-
tal stripes. Each stripe contains the properties such
as stripe corner positions, the minimum and maximum
disparity values. Then these thin horizontal stripes are
merged according the criteria that the overall comput-
ing complexity is minimum taking the computational
overhead into account. At each iteration of the merg-
ing process, only one pair of neighbouring stripes are
merged. The properties of the merged stripe such as
the corner positions and the minimum and maximum
disparity values need to be updated. After each it-
eration, the number of horizontal stripes decreases by
one. The iteration stops when there is no neighbouring
stripes look similar. Different merged horizontal stripes
usually have different width and disparity ranges.

After the image has been segmented into horizontal
stripes, each such stripe can then be cut into smaller
rectangular regions by vertical lines. The steps are
similar to those for segmenting images into horizontal
stripes. The objective is to obtain large regions with
small disparity range and small regions with large dis-
parity range so that the overall cost

∑R−1
i=0 (MiNiDi)

is smaller. Figure 2 illustrates the rectangular subre-
gioning precess. Figure 2(a) gives the initial horizon-
tal stripes of the input image. Figure 2(b) shows the
merged horizontal stripes obtained from Figure 2(a).
Figure 2(c) is the initial vertical cuttings for each ob-
tained horizontal stripe. Figure 2(d) shows the result
of merging the small rectangular regions within each of
the horizontal stripe. The resultant segmentation of an
input image can be in the form as shown in Figure 3.
For example, the segmented image contains horizontal
stripe AA′B′B, and this stripe is then cut into smaller
rectangles. One of these smaller rectangles is PQST .
Fast correlation is performed on each of these smaller
rectangle images, and the obtained correlation coeffi-
cients are put together to form 3D cubes. Figure 4(a)
shows a disparity map which is used for rectangular
subregioning at one level of the pyramid. Figure 4(b)
shows the rectangular regions obtained. Most of the
regions have small disparity ranges.

2.4 Corresponding Regions in Right
Image

In the case when the left image is taken as the refer-
ence image, the subregions obtained on the disparity
map also correspond to the subregions in the left im-
age. Otherwise, the subregions obtained on the dis-
parity map will correspond to the subregions in the
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(c) (d)

(b)(a)

Figure 2: Rectangular subregioning through merging
thin rectangles. (a) shows the initial horizontal stripes
for the input disparity map. (b) illustrates some hori-
zontal regions after the horizontal stripe merging pro-
cess. (c) shows the initial vertical stripes for each of
the horizontal regions shown in (b); and (d) is the final
rectangular subregions obtained.

...

M−1

C

B

A

0
0 N−1

A’

B’

C’

T

P Q

S

Figure 3: Sub-dividing the whole image into subimages.
Fast correlation is performed on each pair of the corre-
sponding rectangular subregions.

right image. After obtaining the rectangular subimages
for the reference image, one then needs to obtain the
corresponding regions in the other image so that fast
similarity measures can be made for the corresponding
subregions. When calculating the corresponding posi-
tions of a subregion in the right image after knowing
the position of a rectangular region in the left image,
the disparity information of this region in the dispar-
ity map will be used. If the disparity search range for
a subregion (between y1, y2 and x1L, x2L) in the left

(a) (b)

Figure 4: An example result of sub-dividing the whole
image into subimages based on intermediate disparity
map in the image pyramid. (a) a disparity map at a
particular image pyramid; (b) the disparity map shown
in (a) overlaid with the rectangles obtained. Each of
these rectangles will be used for running the fast corre-
lation algorithm described earlier.

image is within dmin and dmax, the x position of the
left side of the corresponding region in the right im-
age x1R should be a position between x1L + dmin and
x1L + dmax as shown in Figure 5. Similarly, the x
position of the right side of the corresponding region
in the right image x2R should be a position between
x2L + dmin and x2L + dmax. The approach we used
here for rectangular subregioning may not be the global
optimal, but it is fast and simple and serves our pur-
pose for fast processing. When actually performing fast
correlation calculation for each pair of the subregions,
certain size of region overlapping as shown in Figure 5
by the shaded region needs to be considered in order
to eliminate the boundary effect. It is also necessary
to allow some overlapping between successive horizon-
tal stripes. The amount of overlapping depends on the
size of the correlation window used.

After the fast correlation for each of the rectangular
regions, we have a smaller 3D volume for each pair
of the corresponding subregions. The 3D volume for
the whole image can be constructed from each of the
smaller 3D volumes together with the disparity range
information. Figure 6 shows the 3D volume size and
shape obtained by using the RSR process. One can see
the different shapes of Figure 6 compared with that of
Figure 1 which is obtained using fast correlation on the
whole images without using the RSR.

2.5 Algorithm Steps for Rectangular
Subregioning

The steps for performing the rectangular subregioning
can be summarised as:
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y2

y1

y2

y1

A Subregion in the Left Image

Padded Region

x1L x2L

x1R
A Subregion in the Right Image
x2Rx1L+dmin

x1L+dmax

Figure 5: Obtaining the corresponding region in the
right image based on the position of the region in the left
image. The position of a corresponding region in the
right image also depends on the local disparity infor-
mation. To remove the boundary effect, a small over-
lapping region is needed between successive subregions
within a horizontal stripe.

Image

Image Columns (N)
Disp

ar
ity

(D
)

Rows
(M)

Figure 6: Size and shape of the 3D correlation volume
obtained by stacking together many smaller 3D volumes
after correlation calculation using RSR.

0. Inputs of the algorithm:

(a) Left/right images for the current level of the
pyramid;

(b) Initial disparity map. This may be zero at the
top of a pyramid if there is no prior disparity
input;

(c) Initial width of each of the stripes;
(d) Penalty threshold.

1. Segment the images into horizontal stripes:

(a) Divide the disparity map into horizontal
stripes with certain width, and obtain the
disparity search range for each stripe;

(b) Recursively merge neighbouring stripes until
no neighbouring stripes are similar enough to
be merged. At each iteration of the merging
process, the two neighbouring stripes with
the minimum disparity difference are merged

and only one merge occurs at each iteration.

2. For each horizontal stripe, segment it into rectan-
gular regions:

(a) Divide each horizontal stripe into vertical
stripes with certain width, and obtain the
disparity search range for each substripe;

(b) Recursively merge vertical stripes using simi-
lar merging technique as in merging horizon-
tal stripes;

(c) Update the disparity search range informa-
tion for each region.

3. Obtain the corresponding regions in the right im-
age using the disparity information:

(a) Use the disparity search range information
for each rectangular regions obtained to cal-
culate the corresponding region in the right
image.

3 Maximum-Surface in the Vol-
ume

From the previous section, we have obtained a 3D cross
correlation coefficient volume as shown in Figure 6 us-
ing fast cross correlation working on rectangular sub-
regions.

In this section, we will approach the issue of obtain-
ing disparity map from the 3D correlation coefficient
volume using dynamic programming techniques, which
is computationally efficient. As mentioned in Section 1,
there are methods that take information from neigh-
bouring epipolar lines, but they do not provide op-
timal solutions. The graph-cut framework is usually
computationally slow. In this paper, we try to de-
velop a fast algorithm which provides optimal solution
for obtaining the disparity map from the 3D volume.
We developed a new method to obtain a maximum-
surface from a 3D volume using a two-stage dynamic
programming (TSDP) technique. Because of the use
of TSDP, the algorithm is very fast. This maximum-
surface cuts through the 3D volume from the top to the
bottom or other directions as illustrated in Figure 7.
The maximum-surface gives the global maximum sum-
mation of the correlation coefficients along the surface
when certain constraints are imposed.

Now we describe our new algorithm for the
maximum-surface extraction in a 3D volume of size
MND using our fast TSDP method. The first stage of
the algorithm is to obtain an accumulated intermedi-
ate 3D volume in the vertical direction for each vertical
j slice. Assume C(i, j, d) is the correlation coefficient
value in the input 3D volume at position (i, j, d), where
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M
(i)

D (d
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Figure 7: The illustration of the 3D maximum-surface
which give the maximum accumulation of values in the
3D cross correlation coefficient volume.

0 ≤ i < M, 0 ≤ j < N , and 0 ≤ d < D. We create an
intermediate array Y (i, j, d) which contains the accu-
mulated values of the maximum cross correlation coef-
ficients for each vertical j slice of the same 3D volume
using dynamic programming techniques say from top
to bottom, i.e. when i changes from 0 to M -1. We may
also call the Y volume as the distance function. The
Y volume is obtained by working on each individual
vertical slice for a particular j. For those values in the
top horizontal slice of the volume, i.e. when i = 0,

Y (0, j, d) = C(0, j, d) (8)

i.e. the top (horizontal) slice of Y is a copy of the top
slice of C. For the remaining horizontal slices of the
volume, the Y values at each position is obtained by
using the following recursion which is a typical dynamic
programming formula:

Y (i, j, d) = C(i, j, d) + max
t:|t|≤p

Y (i− 1, j, d + t) (9)

where p determines the number of local values that
need to be checked. If p = 1, only three neighbouring
values in Y need to be evaluated. The three values are
Y (i−1, j, d−1), Y (i−1, j, d) and Y (i−1, j, d+1). The
recursion in Eq. (9) only happens in the (i, d) plane for
each particular j as shown in Figure 8. Figure 8(a) is
the 3D correlation coefficient volume with one j slice
in grey; and Figure 8(b) shows the positions of neigh-
bouring Y values for one plane during the recursion.
In this paper we will just use p = 1. Other values of p
such as 2 or 3 can also be used. But larger p values will
increase the computation cost of the above recursion.
Other types of smoothness constraints can also be built
in at this stage.

After the recursion of the first stage dynamic
programming described in the previous paragraph,
Y (i, j, d) contains the maximum summation of

N (j)

M
(i)

D (d
)

M
(i)

D (d
)

Y(i−1,j,d−1)

Y(i−1,j,d)

Y(i−1,j,d+1)

Y(i,j,d)
[C(i,j,d) ]

(a) (b)

Figure 8: Obtaining the Y (i, j, d) volume. (a) shows
the 3D volume Y with a vertical slice in grey; (b) illus-
trates the positions of the Y values at each iteration.

C(i, j, d) in the vertical direction for each slice from
top to bottom of the 3D volume. We now move to
a second stage of the TSDP algorithm using volume
Y to obtain the disparity map for the input stereo im-
ages. In this stage, we work in the horizontal direction.
Starting from the bottom of the 3D volume Y where
maximum values have been accumulated, we select the
2D horizontal slice with i = M -1, i.e. the bottom slice
for disparity estimation. From this 2D matrix of size
ND, a shortest-path from left to right or from right
to left is obtained using dynamic programming tech-
niques as illustrated by the thick line inside the shaded
region in Figure 9. The sum of the values along this
path gives the maximum value which is also the max-
imum summation value along the whole 3D surface.
This obtained path is related to the disparities for the
last or bottom row of the input image. The distance
of each point along this path to the middle dashed line
in Figure 9 is the obtained disparity for the same x-
positioned point of the input image.

We then move from the bottom slice of Y upwards.
When calculating the disparity for row number i-1, we
use the result obtained for row number i. We now
select the 2D horizontal slice number i-1 of the 3D vol-
ume Y , and mask out those values which are more
than p position away from the shortest-path (the dot-
ted path) obtained from row number i, as shown in
Figure 10. Then a new shortest-path (the black curve)
is obtained in this 2D matrix from left to right which
are constrained to lie inside this grey region. This pro-
cess of obtaining shortest-path is repeated until the
shortest-path for the first row of the image is obtained.
When obtaining the shortest-path for each horizontal
slice, discontinuity of the path can be factored in.

In the above description, the processing goes from
top of the volume to the bottom when building the
Y volume; the horizontal dynamic programming step

8



goes from left to right; and the processing for each hor-
izontal 2D slice goes from the bottom to the top. Other
possible ways of obtaining the disparity map is to gen-
erate the Y volume from bottom to top; select the top
slice of the Y volume and using dynamic programming
to find a best path from right to left for obtaining the
disparity estimate; move down to the next horizontal
2D slice to obtain disparity. The Y volume can also
be built in the horizontal direction for the first stage.
In this case, the second stage will be working on each
vertical slice of the Y volume.

+w

−w

0

Figure 9: Shortest-path obtained for the bottom slice of
the Y (i, j, d) volume using dynamic programming tech-
nique. The bottom-left and the top-right corners of the
matrix do not contain valid correlation values.

+w

−w

0

Figure 10: An illustration of the shortest-path obtained
for each horizontal slice of the Y (i, j, d) volume except
the bottom one. The dotted line shows the path position
obtained from the previous horizontal slice. The grey
region include those points that are within p pixels from
the dotted line. The dark line is the new path obtained
for the current horizontal slice inside the grey band.

Putting all the shortest-paths for each of the scan
line together forms a 3D surface within the 3D vol-
ume of Y . Because successive shortest-path for each
scan line is obtained in the neighbourhood of the pre-
vious path position, the 3D maximum-surface tech-
nique gives more consistent disparities. The current
implementation does not consider big disparity jumps.
Therefore, blurring effect may occur at depth disconti-
nuity regions. The complexity of the TSDP algorithm
is linear with respect to the size of the 3D volume, i.e.
O(MND).

For a better understanding of the TSDP algorithm
which works on a 3D volume, we make an analogy
to the ordinary shortest-path extraction on a 2D ma-
trix using dynamic programming. In the case the 2D
shortest-path extraction using dynamic programming,
the first step is to obtain the distance function from
one side of the matrix to the other side. The second
step is to backtrack for finding the best path. In our
TSDP algorithm for finding the maximum-surface in a
3D volume, the first stage of obtaining the Y volume
is similar to the 2D case for calculating the distance
function. The second stage of the TSDP algorithm is
similar to the backtracking step in the 2D case. The
backtracking in 2D matrix is to find a point position
along the shortest-path. The backtracking for 3D sur-
face is to find a 2D path along the 3D surface. However,
the backtracking stage in the 3D case involves a series
of 2D shortest-path extraction for each slice of the 3D
volume. The shortest-paths in the neighbouring slices
should not be too different from each other.

The steps of our TSDP algorithm for fast stereo
matching are:

1. Input: the 3D volume of similarity measurement.
2. Stage One: vertical dynamic programming to ob-

tain the intermediate 3D volume Y which contains
the maximum accumulation of correlation values:

(a) Select each vertical slice of the input 3D vol-
ume;

(b) Update the Y values based on Eq. (9) as
shown in Figure 8.

3. Stage Two: horizontal dynamic programming to
obtain the disparity map:

(a) Select the bottom horizontal slice from the Y
volume;

(b) Use dynamic programming technique to find
a shortest-path in this 2D slice. This path
is related to the disparity estimation for the
bottom line of the input image;

(c) Select next horizontal slice up in the Y vol-
ume, mask out pixels which are more than
p pixels away from the shortest-path ob-
tained from the previous slice, and find a
new shortest-path for this slice. Check to see
whether all the slices have been processed, if
not, go to Step 3c; otherwise go to Step 3d;

(d) Put all the shortest-paths from each horizon-
tal slice together to form a disparity map.

9



4 Matching Strategy

4.1 Coarse-to-fine Scheme

It has been shown that a multi-resolution or coarse-
to-fine approach to stereo matching is faster than one
without multi-resolution (Kumar and Desai, 1994), as
the search range in each level of the pyramid is small.
Besides fast computation, a more reliable disparity
map can also be obtained by exploiting the multi-
resolution data structure. The upper levels of the pyra-
mids are ideal to get an overview of the imaged scene.
The details can be found down the pyramid at a higher
resolution. There are three useful properties for the
coarse-to-fine scheme (Ackermann and Hahn, 1991):
(a) the pull-in range or search range can be increased,
because at a coarser pyramidal level only rough initial
values are needed; (b) the convergence speed can be
improved as only the neighbourhood of the previous
result needs to be searched; and (c) the reliability of
finding correct matches can be increased.

In the current implementation, a lower resolution
image is obtained by simply taking the average value
of the corresponding r×r pixels in a higher resolution
image in the previous level for its simplicity, where r
is the reduction ratio used when building the image
pyramid. During the process of projecting the disparity
map from the current level of the pyramid to the next
(if current level is not level 0, or the highest image
resolution), the disparity image size was scaled up by
the value of r, and the disparity value was scaled up
by the same r. A commonly used value for r is 2. Note
that other values of r such as 3 can also be used. The
disparity value where the position (i, j) of the next level
image is not a multiple of r was obtained by bilinear
interpolation.

The size of the 3D volume is small in this coarse-
to-fine framework as the disparity search is only nec-
essary in the neighbourhood of the disparity obtained
in the previous level. In the coarse-to-fine matching
scheme, the computation complexity for the step of ob-
taining the disparity map from the 3D volume is only
O(MND′), where D′ = 3 in the lower levels of the im-
age pyramid. This is due to the fact that the disparity
search is local to the initial estimates.

Our new RSR technique which uses the intermedi-
ate disparity map for obtaining the smaller rectangular
regions works in the coarse-to-fine scheme.

4.2 Sub-pixel Accuracy

Sub-pixel accuracy can be obtained by fitting a second
degree curve to the correlation coefficients in the neigh-
bourhood of the disparity and the extrema of the curve

can be obtained analytically. The general form of the
second degree curve (parabola) is: f(x) = a+b·x+c·x2.
The maximum can be found where the slope is zero in
the quadratic function. The sub-pixel position can be
found at x = −b/2c. If only three correlation values
at and around the position d are used, e.g. values at
the points d − 1, d, and d + 1, the sub-pixel position
of the disparity can be calculated using the following
formula (Anandan, 1989):

x = d +
1
2
× C(d− 1)− C(d + 1)

C(d− 1)− 2C(d) + C(d + 1)
(10)

where C(d) is the correlation value in the 2D matrix at
position d, and x is the sub-pixel disparity obtained.
If five correlation values are used, e.g. the values at
five points d − 2, d − 1, d, d + 1, and d + 2, we derive
the following equation for the calculation of sub-pixel
position:

x = d +
7
20
×

2C(d− 2) + C(d− 1)− C(d + 1)− 2C(d + 2)
2C(d− 2)− C(d− 1)− 2C(d)− C(d + 1) + 2C(d + 2)

(11)

4.3 Algorithm Steps

The steps of our proposed algorithm, which uses the
combination of RSR and TSDP, i.e. RSR+TSDP, for
fast stereo matching are:

1. Build image pyramids with P levels (from 0 to
P−1), with the reduction ratio of r, from the orig-
inal left and right images; The images at upper or
coarse resolution levels are obtained by averaging
the corresponding r×r pixels in the lower or finer
resolution level images.

2. Initialize the disparity map as zero for level k =
P − 1 and start stereo matching at this level.

3. Perform stereo matching using the method de-
scribed in Sections 2-4 which includes:
(a) Segment images into rectangular subregions

based on the current disparity map;
(b) Perform fast zero mean normalised correla-

tion to obtain the correlation coefficients for
each subregions and build a 3D correlation
coefficient volume for the whole image;

(c) Use the two-stage dynamic programming
technique to find the 3D maximum-surface,
which will then give the disparity map as de-
scribed in Section 3.

4. If k 6= 0, propagate the disparity map to the next
level in the pyramid using bilinear interpolation,
set k = k− 1 and then go back to Step 3; if k = 0,
go to Step 5.
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5. Fit curves to obtain sub-pixel accuracy using
Eq. (10) or Eq. (11) if necessary.

6. Display disparity map.

5 Experimental Results

This section shows some of the results obtained us-
ing our new RSR+TSDP algorithm described in this
paper. A variety of images have been tested, includ-
ing synthetic images and different types of real images.
The input left and right images are assumed to be rec-
tified epipolar images. Therefore, matching points lie
on the same horizontal scan line. The positions of the
input left and right images have been swapped in the
figures so that cross eye viewing becomes easier. Imple-
mentations of the Roy’s (Roy, 1999), Cox’s (Cox et al.,
1996) and Sun’s (Sun, 1997) methods are used for com-
parison. The codes for Roy’s and Cox’s methods are
downloaded from their web pages.
Synthetic Images

Figure 11 gives the results of algorithms in (Sun,
1997) and our new algorithms running on two pairs of
synthetic images. The two columns on the left show
the input left and right images. The third column is
the results obtained using our earlier method presented
in (Sun, 1997). The last column shows the results using
the method described in this paper. Shown in the top
row are images of a sphere on a table. The size of
this pair of images is 256×256. The bottom row shows
images of a corridor. The size of the corridor images
is 512×512. It can be seen from these figures that our
new 3D maximum-surface method using TSDP gives
better results, especially for the sphere image.
Random Dot Stereogram (RDS)

A pair of random dot stereogram are shown in Fig-
ure 12(a,b). The stereo matching results for our new
method, Roy’s, Cox’s and Sun’97 methods are given
in Figure 12(c,d,e,f). Among these four methods, only
Cox’s method explicitly formulated stereo occlusions.
The results in (c) and (f) are very similar, but the run-
ning times as will be shown later are different. The
main differences of the disparity estimates using this
pair of RDS images for these four methods are at the
discontinuity boundaries.
Real Images

Figures 13-15 show some results using real images.
Park meter: The input images shown in Fig-

ure 13(a,b) are the frames 2 and 14 of the park meter
sequence. The matching results for our new method,
Roy’s, Cox’s and Sun’97 methods are given in Fig-
ure 13(c,d,e,f).

Pentagon: The input images are shown in Fig-
ure 14(a,b). The matching results for our new method,

Roy’s, Cox’s and Sun’97 methods are given in Fig-
ure 14(c,d,e,f).

Fruit scene: The input images are shown in Fig-
ure 15(a,b). The matching results for our new method,
Roy’s, Cox’s and Sun’97 methods are given in Fig-
ure 15(c,d,e,f).

From the results shown in Figures 13, 14 and 15, it
can be seen that our new RSR+TSDP method gives
more consistent results than the other three methods.
Many other types of real images have also been tested,
and good results have been obtained. Due to limitation
of space, only small portion of the tested images were
shown here. Figure 16 gives some more results obtained
by using our new RSR+TSDP method described in this
paper. The image shown in Figure 16(a) is a picture
of softball on newspaper. Figure 16(b) shows a bent
circuit board. Figure 16(c) shows an aerial photo with
houses in the image.
Running Times

The computer used is a 500MHz Pentium III run-
ning Linux. The algorithm was implemented in the C
language without using any hardware supports or as-
sembly languages. The typical running time for the
algorithm on a 256×256 image with about 30 pixels
disparity is in the order of several hundred millisec-
onds. Note that the timings reported in this paper do
not include the sub-pixel calculation step.

Table 1 gives some of the typical running times of
the algorithm on different sizes of images with different
disparities using whole image correlation and the RSR
methods. The size of the correlation window used for
the images shown in the table is 9×9. The reduction
ratio r used in the pyramid generation process is 2. The
time shown in the table includes the time for the pyra-
mid building process and the time for image reading
and writing. For example, for the “ball” image of size
256×256 as shown in Figure 16(a), the program only
takes 0.32 seconds. It only takes 1.39 seconds to obtain
the disparity map for the 512×512 pixel “pentagon”
image.

The time shown for “User time1” is obtained with-
out using the RSR method as described in Section 2.2,
while the time shown for “User time2” is obtained by
using the RSR method. It can be seen that the time
spent by the algorithm using RSR method is almost
half of the time without using the RSR method. The
amount of time saved depends on the shape of the ob-
jects. Interested readers could try our algorithm using
their own images by accessing the web page given in
Section 8.

Table 2 gives some of the typical running times of
the 2D matrix and 3D maximum-surface algorithms on
different size of images. Other parameters used such as
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11: The matching results for two pairs of synthetic images. The image size for the top row is 256×256.
The image size for the bottom row is 512×512. The top row gives the images of a sphere on a table. The bottom
row shows the images of a corridor. (a,e) right images; (b,f) left images; (c,g) the disparity maps recovered using
method in (Sun, 1997); and (d,h) the disparity maps recovered using our new RSR+TSDP method. (Images (a,b)
courtesy of Bill Hoff at the University of Illinois (Hoff and Ahuja, 1989). Images (e,f) courtesy of Computer
Vision Group, Computer Science III, University of Bonn.)

Table 1: Running times of the whole image correlation and the RSR algorithms on different images. The dynamic
programming stage of this test runs on 2D matrix. The size of the correlation window is 9×9. The reduction ratio
r used in the pyramid generation process is 2. The ball, circuit and flat images are shown in Figure 16. The
pentagon image is shown in Figure 14(a)(b).

Image Image Pyramid Search Disparity User User
name size levels range range time1 time2
ball 256×256 3 [-4,4] [-19,7] 0.53s 0.32s

pentagon 512×512 3 [-2,2] [-10,10] 2.42s 1.39s
circuit 512×512 3 [-5,5] [-21,23] 3.36s 1.59s

flat 1000×1000 4 [-3,3] [-31,23] 16.86s 7.51s

pyramid levels, disparity search ranges, image sizes, are
given in the table. The last two columns in the table
show the timings of the algorithm described in (Sun,
1997) (Method 2D path) and the algorithm described
in this paper (Method 3D surface). There is not much
difference in the speed of the two algorithms. One
might expect to see that the execution time for our
new algorithm will be much longer than that of the 2D
path method because of the need for the extraction of
3D maximum-surface. The computation time for the

3D surface method is only slightly longer than that of
the 2D path method.

Table 3 shows the computation times for Roy, Cox
and our algorithms on three pair of images. Roy’s
algorithm takes much longer to finish compared with
other two algorithms. Our method is also much quicker
than Cox’s method. The reason that our new algo-
rithm can achieve fast computational speed will be
discussed in the next section. There are stereo vi-
sion systems that are able to perform stereo match-
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(a) RDS right (b) RDS left (c) RSR+TSDP

(d) Roy’s method (e) Cox’s method (f) Sun’97

Figure 12: Synthetic random dot stereogram. (a) and (b) are the right and left input images. (c) shows our result
using the RSR+TSDP algorithm described in this paper; (d) result obtained using Roy’s method; (e) result obtained
using Cox’s method; and (f) result obtained using Sun’s method described in (Sun, 1997).

(a) pm-14 (b) pm-2 (c) RSR+TSDP

(d) Roy’s method (e) Cox’s method (f) Sun’97

Figure 13: Park meter scene. (a) and (b) are the right and left input images. (c) Results obtained using our
new method (RSR+TSDP). (d) Results obtained using Roy’s method. (e) Results obtained using Cox’s method.
(f) The matching results using the method described in (Sun, 1997). (Images (a,b) courtesy of Carnegie Mellon
University).
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(a) pentagonR (b) pentagonL (c) RSR+TSDP

(d) Roy’s method (e) Cox’s method (f) Sun’97

Figure 14: Pentagon stereo. (a) and (b) are the right and left input images. (c) Results obtained using our new
method (RSR+TSDP). (d) Results obtained using Roy’s method. (e) Results obtained using Cox’s method. (f)
Results obtained using the method described in (Sun, 1997). (Images (a,b) courtesy of Bill Hoff at the Univ. of
Illinois (Hoff and Ahuja, 1989)).

Table 2: Running times of our algorithms on different images. The size of the correlation window is 9×9. The
reduction ratio r used in the pyramid generation process is 2. Both of these algorithms use RSR.

Image Image Pyramid Search Disparity Method Method
name size levels range range 2D path 3D surface
ball 256×256 3 [-4,4] [-19,7] 0.32s 0.37s

pentagon 512×512 3 [-2,2] [-10,10] 1.39s 1.50s
circuit 512×512 3 [-5,5] [-21,23] 1.59s 1.82s

flat 1000×1000 4 [-3,3] [-31,23] 7.51s 7.53s

ing in video rate (Point Grey Research, ; CMU Video-
rate Stereo Machine, ; SRI Stereo Engine, ). But all
these systems have hardware or assembly language sup-
ports and some have multiple cameras.

6 Discussion on Reliability and
Computational Speed

The reliable results of our algorithm are achieved by
applying the combination of the following techniques:
(1) Coarse-to-fine strategy is used. As mentioned in
Section 4.1, the upper levels of the pyramids are ideal
to get an overview of the imaged scene. Therefore the

matching in the upper levels will have a more global
effect. The details can be found down the pyramid at
higher resolution. (2) The zero mean normalized cross
correlation similarity measure is used, which is inde-
pendent of differences in brightness and contrast due
to the normalization with respect to mean and stan-
dard deviation. The similarity measure using SAD or
SSD, which is relatively cheap computationally, is not
independent of differences in brightness and contrast.
(3) The correlation coefficient value is used as input
to the dynamic programming stage. A number of ap-
proaches that use dynamic programming method just
use the intensity value along the left and right epipolar
lines. These approaches do not take the neighbourhood
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(a) fruitR (b) fruitL (c) RSR+TSDP

(d) Roy’s method (e) Cox’s method (f) Sun’97

Figure 15: Fruit stereo. (a) and (b) are the right and left input images. (c) Results obtained using our new
method (RSR+TSDP). (d) Results obtained using Roy’s method. (e) Results obtained using Cox’s method. (f)
Results obtained using the method described in (Sun, 1997). (Images (a,b) courtesy of Bill Hoff at the University
of Illinois (Hoff and Ahuja, 1989)).

(a) ball (b) circuit (c) flat

Figure 16: Three images (only left) and the disparity maps obtained. The top row gives the left images of stereo
pairs. The bottom row shows the disparity map. The image size in (a) is 256×256; The image size in (b) is
512×512; The image size in (c) is 1000×1000. (Input images (a,b) courtesy of Bill Hoff at the University of
Illinois (Hoff and Ahuja, 1989); input images (c) courtesy of Stuttgart ISPRS Image Understanding datasets).
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Table 3: Running times of different algorithms. The RDS image is shown in Figure 12(a,b). The pm image is shown
in Figure 13(a,b). The pentagon image is shown in Figure 14(a,b).

Image Image Disparity Roy’s Cox’s Our
name size search range method method method

RDS 300×300 10 300.63s 1.44s 0.45s
pm 512×480 25 374.83s 4.28s 1.75s

pentagon 512×512 25 462.47s 5.43s 1.62s

information from the successive scan lines into account.
In our approach, information from different scan lines
have been used by using the correlation coefficient value
which is obtained from a local window during the cross
correlation step. (4) Dynamic programming technique
is used to find a 3D maximum-surface in the correlation
volume. By using the two-stage dynamic programming
technique on the input correlation coefficient volume,
one will obtain a more smooth surface within the vol-
ume. The 3D maximum-surface method takes all the
information into account, rather than work individu-
ally for each of the epipolar lines. As most of the other
correlation based matching methods, if there is a large
area in the image contains little texture, the correlation
coefficients for a number of points in this area may be
undefined. The result of matching may not be very
pleasing. However, if this area is not too large, the
effect of using the dynamic programming technique to
find a surface will have the effect of filling the holes
where undefined correlation values exist. The algo-
rithm presented in this paper does not explicitly model
occlusion. Also because it is an area-based method,
blurring effect at depth discontinuity regions may oc-
cur. The coarse-to-fine strategy may also encounter
problems at depth discontinuity regions.

The fast computational speed of our algorithm is
achieved in conjunction with some of the aspects men-
tioned above for achieving reliability of the algorithm.
Some of the aspects are: (1) Fast zero mean normal-
ized cross correlation is used. The original idea of box-
filtering for calculating image mean was used for fast
calculation of image variance at the same time when
one calculates the image mean. The fast cross corre-
lation between two images are achieved by fixing one
shift for every points on the left image and calculating
the cross correlation in the way similar to that when
one calculates the image variance. This way the redun-
dant computation is eliminated and fast computation
is achieved. (2) We have used a rectangular subre-
gioning technique for fast computation of correlation
coefficients. Rather than working with the whole im-
age when perform cross correlation, the input images
are sub-divided into rectangular subregions depending

on the current disparity map in a certain level of the
pyramid. These regions tend to have the property that
when the disparity range is small the size of the re-
gion is large, and when the disparity range is large the
size of the region is small. The end effect of these are
the reduced computation cost. (3) Apart from having
the advantages of increasing the reliability, the coarse-
to-fine approach is also faster than one without using
it. The smaller image size on the upper levels of the
pyramid gives a rough estimate of the disparity. In the
larger image on the lower levels of the pyramid, one can
use the initial estimate from the previous level to refine
the disparity map in a reduced search range. At the
stage of obtaining the maximum-surface from the 3D
correlation coefficient volume, the complexity of the al-
gorithm is O(MND′). Because a coarse-to-fine scheme
is used, the disparity search range in the lower levels
of the pyramid is only around the neighbourhood of
the result obtained in the previous levels. Therefore,
D′ is usually very small. (4) A two-stage dynamic pro-
gramming technique is used to find a maximum-surface
in the 3D correlation volume. Rather than using the
methods described in (Roy and Cox, 1998; Chen and
Medioni, 1998), a dynamic programming technique is
used which is computationally efficient.

7 Conclusions

We have developed a fast and reliable stereo match-
ing method using rectangular subregioning, fast cor-
relation and 3D maximum-surface techniques in the
coarse-to-fine framework. The algorithm produces a
reliable dense disparity map: for each point in the im-
age, a disparity value is obtained. The fast cross cor-
relation method was developed from the box-filtering
idea. The time spent in the stage for obtaining the
normalized cross correlation is almost invariant to the
search window size. The processing speed is further
improved by segmenting the input image into subim-
ages and work with the smaller images which tend to
have smaller disparity ranges. This new subregioning
technique is also helpful to reduce the memory stor-
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age space. The 3D maximum-surface is obtained from
the 3D correlation volume using a new two-stage dy-
namic programming technique. There are two original
contributions in this paper. The first is the rectan-
gular subregioning (RSR) method for further speeding
up the correlation calculation. The second is the two-
stage dynamic programming (TSDP) method for 3D
maximum-surface extraction for disparity estimation.
The typical running time for a 512×512 image is in
the order of a few seconds. The algorithm is imple-
mented in the C language on standard computers, and
no special hardware or assembly language is used. The
algorithm was shown to be fast and reliable by testing
on several different types of images: both synthetic and
real images.

8 Web Demo

There is a web page setup to allow interested readers
to run our fast stereo matching algorithm using their
own stereo images. The web demo address is at:
http://extra.cmis.csiro.au/IA/changs/stereo/
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Zhang, Z., Fua, P., Théron, E., Moll, L., Berry,
G., Vuillemin, J., Bertin, P., and Proy, C. (1993).
Real time correlation-based stereo: Algorithm, im-
plementations and applications. Technical Report
RR-2013, INRIA.

Fua, P. (1993). A parallel stereo algorithm that pro-
duce dense depth maps and preserves image fea-
tures. Machine Vision Applications, 6(1):35–49.

Fusiello, A., Roberto, V., and Trucco, E. (1997). Effi-
cient stereo with multiple windowing. In Proceed-
ings of Computer Vision and Pattern Recognition,
pages 858–863, Puerto Rico. IEEE Computer So-
ciety Press.

Geiger, D., Ladendorf, B., and Yuille, A. (1995). Occlu-
sions and binocular stereo. International Journal
of Computer Vision, 14:211–226.

Gimel’farb, G. L., Krot, V. M., and Grigorenko, M. V.
(1992). Experiments with symmetrized intensity-
based dynamic programming algorithms for re-
constructing digital terrain model. International
Journal of Imaging Systems and Technology, 4:7–
21.

Grimson, W. E. L. (1985). Computational experi-
ments with a feature based stereo algorithm. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, PAMI-7:17–34.

Hoff, W. and Ahuja, N. (1989). Surfaces from stereo:
Integrating feature matching, disparity estima-
tion, and contour detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
11(2):121–136.

Intille, S. and Bobick, A. (1994). Disparity-space im-
ages and large occlusion stereo. In Proceedings of
European Conference on Computer Vision, pages
179–186, Stockholm, Sweden.

Ishikawa, H. and Geiger, D. (1998). Occlusions, discon-
tinuities, and epipolar lines in stereo. In Proceed-
ings of European Conference on Computer Vision,
pages 232–248, Freiburg, Germany.

Jones, D. G. and Malik, J. (1992). Computational
framework for determining stereo correspondence
from a set of linear spatial filters. Image and Vi-
sion Computing, 10(10):699–708.

Kim, Y.-S., Lee, J.-J., and Ha, Y.-H. (1997). Stereo
matching algorithm based on modified wavelet
decomposition process. Pattern Recognition,
30(6):929–952.

Kolesnik, M. I. (1993). Fast algorithm for the stereo
pair matching with parallel computation. In
Chetverikov, D. and Kropatsch, W. G., editors,
5th International Conference on Computer Anal-
ysis of Images and Patterns, pages 533–537, Bu-
dapest, Hungary. Springer-Verlag.

Konecny, C. and Pape, D. (1981). Correlation tech-
niques and devices. Photogrammetric Engineering
and Remote Sensing, 47(3):323–333.

Kumar, K. S. and Desai, U. B. (1994). New algorithms
for 3D surface description from binocular stereo
using integration. Journal of the Franklin Insti-
tute, 331B(5):531–554.

Lloyd, S. A. (1985). A dynamic programming algo-
rithm for binocular stereo vision. GEC Journal of
Research, 3(1):18–24.

Lotti, J.-L. and Giraudon, G. (1994a). Adaptive win-
dow algorithm for aerial image stereo. In Pro-
ceedings of International Conference on Pattern
Recognition, volume A, pages 701–703, Jerusalem,
Israel. IEEE Computer Society Press.

Lotti, J.-L. and Giraudon, G. (1994b). Correlation al-
gorithm with adaptive window for aerial image in
stereo vision. In European Symposium on Satel-
lite Remote Sensing (EUROPTO), pages 2315–10,
Rome, Italy.

Medioni, G. and Nevatia, R. (1985). Segment-based
stereo matching. Computer Vision, Graphics, and
Image Processing, 31:2–18.

Ohta, Y. and Kanade, T. (1985). Stereo by intra- and
inter-scanline search using dynamic programming.
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, PAMI-7:139–154.

O’Neill, M. and Denos, M. (1996). Automated sys-
tem for coarse-to-fine pyramidal area correlation
stereo matching. Image and Vision Computing,
14(3):225–236.

Point Grey Research. http://www.ptgrey.com/.

Porr, B., Cozzi, A., and Wörgötter, F. (1998). How
to ‘hear’ visual disparities: real-time stereoscopic
spatial depth analysis using temporal resonance.
Biological Cybernetics, 78(5):329–336.

Rechsteiner, M., Schneuwly, B., and Troester, G.
(1994). Dynamic workspace monitering. In Ebner,
H., Heipke, C., and Eder, K., editors, Interna-
tional Archives of Photogrammetry and Remote

18



Sensing, volume 30, pages 689–696, Munich, Ger-
many.

Rojas, A., Calvo, A., and Muñoz, J. (1997). A dense
disparity map of stereo images. Pattern Recogni-
tion Letters, 18(4):385–393.

Rosenfeld, A. and Kak, A. C. (1982). Digital Picture
Processing, volume II. Academic Press, New York,
second edition.

Roy, S. (1999). Stereo without epipolar lines: A
maximum-flow formulation. International Journal
of Computer Vision, 34(2/3):147–161.

Roy, S. and Cox, I. J. (1998). A maximum-flow for-
mulation of the N-camera stereo correspondence
problem. In Proceedings of International Confer-
ence on Computer Vision, pages 492–499, Bom-
bay, India. IEEE.

Scharstein, D. and Szeliski, R. (1998). Stereo matching
with nonlinear diffusion. International Journal of
Computer Vision, 28(2):155–174.

SRI Stereo Engine. http://www.ai.sri.com/˜konolige/svs/.

Sun, C. (1997). A fast stereo matching method. In
Digital Image Computing: Techniques and Appli-
cations, pages 95–100, Massey University, Auck-
land, New Zealand.

Sun, C. (1998). Multi-resolution rectangular subre-
gioning stereo matching using fast correlation and
dynamic programming techniques. Technical Re-
port 98/246, CSIRO Mathematical and Informa-
tion Sciences, Australia.

Wei, G.-Q., Brauer, W., and Hirzinger, G. (1998).
Intensity- and gradient-based stereo matching us-
ing hierarchical Gaussian basis functions. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 20(11):1143–1160.

Wu, Q. X. (1995). A correlation-relaxation-labeling
framework for computing optical flow — template
matching from a new perspective. IEEE Trans-
actions on Pattern Analysis and Machine Intelli-
gence, 17(8):843–853.

Wu, Q. X., McNeill, S. J., and Pairman, D. (1995). Fast
algorithms for correlation-relaxation technique to
determine cloud motion fields? In Digital Image
Computing: Techniques and Applications, pages
330–335, Brisbane, Australia.

Xiong, Y., Wang, D., and Zhang, G. (1996). Integrated
method of stereo matching for computer vision. In
Tescher, A. G., editor, SPIE Proc. Applications
of Digital Image Processing XIX, pages 665–676,
Denver, Colorado.

Yang, Y. and Yuille, A. L. (1995). Multilevel enhance-
ment and detection of stereo disparity surfaces.
Artificial Intelligence, 78(1–2):121–145.

Zitnick, C. and Kanade, T. (1998). A volumetric iter-
ative approach to stereo matching and occlusion
detection. Technical Report CMU-RI-TR-98-30,
Robotics Institute, Carnegie Mellon University.

Zitnick, C. and Kanade, T. (2000). A cooperative algo-
rithm for stereo matching and occlusion detection.
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 22(7):675–684.

19


	Introduction
	Rectangular Subregioning for Fast Similarity Measures
	Fast Cross-Correlation on the Whole Images: Review
	Rectangular Subregioning (RSR)
	Rectangular Subregioning Process
	Corresponding Regions in Right Image
	Algorithm Steps for Rectangular Subregioning

	Maximum-Surface in the Volume
	Matching Strategy
	Coarse-to-fine Scheme
	Sub-pixel Accuracy
	Algorithm Steps

	Experimental Results
	Discussion on Reliability and Computational Speed
	Conclusions
	Web Demo

