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Fast Panoramic Stereo Matching Using Cylindrical
Maximum Surfaces
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Abstract—This paper presents a fast panoramic stereo matching algo-
rithm using a cylindrical maximum surface technique. The disparity for
a pair of panoramic images is found in a cylindrical shaped correlation
coefficient volume by obtaining the maximum surface rather than simply
choosing a position that gives the maximum correlation coefficient value.
The use of our cylindrical maximum surface technique ensures that the dis-
parities obtained at the left and the right columns of the panoramic stereo
images are properly constrained. Typical running time for a pair of 1324 X
120 images is about 0.33 s on a 1.7-GHz PC. A variety of real images have
been tested, and good results have been obtained.

Index Terms—Circular shortest path, cylindrical maximum surface,
cylindrical volume, dynamic programming, fast cross-correlation, fast
panoramic stereo matching.

I. INTRODUCTION

Panoramic images are becoming increasingly popular in
image-based virtual environment representations and digital
photography. Different techniques have been developed for creating
panoramic images [1], [2]. Panoramic stereo images are also becoming
available for three-dimensional (3-D) applications. These include 3-D
scene visualizations [3]-[5] and 3-D reconstructions [2], [6]-[10]. The
panoramic stereo images that we are interested in are the 360° stereo
images on a cylindrical surface.

The correspondence problem in stereo vision and photogrammetry
concerns the matching of points or other kinds of primitives such as
edges and regions in two images such that the matched points or prim-
itives are the projections of the same point or primitive in the scene.
The disparity map obtained from the matching stage may then be used
to compute the 3-D position of the scene points given the knowledge
about the imaging geometry of the cameras.

Numerous stereo matching methods that appeared in the literature
were developed for the standard stereo images (see review papers in
[11]-[13]). Some matching methods for panoramic stereo images use
standard window-based correlation search [2], [9], [10]. Because of the
special wrap-around property for the panoramic stereo images, special
care needs to be taken during the stereo matching process. Zheng and
Tsuji used circular dynamic programming for matching vertical fea-
tures in panoramic images [14]. They did not carry out dense matching,
and the matching process was iterative. Li et al. used tensor voting tech-
niques for matching multiperspective panoramas [15].

In this paper, we propose to use cylindrical maximum surface
techniques for carrying out dense panoramic stereo matching. The
algorithm also uses fast correlation calculation techniques for fast
calculation of similarity measure and obtains the cylindrical maximum
surface in a multi-resolution or coarse-to-fine scheme. The disparity
is obtained from the cylindrically shaped 3-D correlation coefficient
volume by finding the cylindrical maximum surface considering
the continuity of neighboring epipolar scanlines. The rest of the
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paper is organized as follows: Section II presents our new method
for panoramic stereo matching by finding the cylindrical maximum
surface in the 3-D cylindrical correlation volume by using circular
shortest path techniques. The detailed matching steps are described in
Section III. Section IV shows the experimental results obtained using
our fast panoramic stereo matching method applied to a variety of
images. Section V gives concluding remarks.

II. PANORAMIC STEREO MATCHING

Panoramic stereo images can be obtained by a number of methods.
They can be generated by mosaicking images from a rotating camera
[10], [16] or by using special imaging optics [2], [17]-[20].

In traditional stereo images, even for the rectified epipolar images,
points that are close to the left or right image boundaries usually do
not have matching points in the other image. For panoramic stereo im-
ages, each of the image contains the whole 360° view. There are no
nonoverlap regions for panoramic stereo images except those occlu-
sion areas.

For a flattened [from cylindrical surface to two-dimensional (2-D)
matrix] panoramic image, the left and right image boundaries are actu-
ally neighboring columns of the actual panoramic image. A panoramic
image is a circular image. It is therefore necessary to make special
considerations for designing algorithms to perform panoramic stereo
matching.

A. Image Boundary Padding

Images are stored as a 2-D array or matrix, but for panoramic im-
ages, the left and right boundaries are actually neighbors. We need to
take this information into account when carrying out panoramic stereo
matching. The similarity measure that we are going to use is windowed
correlation. In order to work up to the image boundaries, we need to
pad the images with some extra pixels. The padding of the left and
the right boundaries are copies of the boundary regions of the original
image. The width of this padding is related to the correlation window
size and disparity search range. The padding of the top and the bottom
of the image can take simple mirror reflection of the original image
pixels. This process is used for both similarity calculation and circular
shortest path extraction algorithms (to be described later).

B. Fast Similarity Measure

Similarity is the guiding principle for solving the correspondence
problem. The most commonly used similarity measure is the cross-cor-
relation coefficient. The sum of absolute differences (SAD) and the
sum of square differences (SSD), which are both dissimilarity mea-
sures, can also be used. It has also been shown that the zero-mean nor-
malized cross-correlation (ZNCC) and the zero-mean sum of squared
differences tend to give better matching results [21]-[23]. The estimate
is independent of differences in brightness and contrast due to the nor-
malization with respect to mean and standard deviation. We will use
the ZNCC coefficient as the similarity measure between the candidate
matching areas, but direct calculation of ZNCC is computationally ex-
pensive. Faugeras et al. developed a recursive technique to calculate the
correlation coefficients which are invariant to the correlation window
size [21]. Sun used the box-filtering concept for fast cross correlation
calculation [24].

We can use the techniques described in [21] or [24] on the boundary
padded panoramic stereo images for fast correlation calculation. As
a result of the fast similarity measure, we obtain a 3-D correlation
volume. The size of the volume depends upon the image row and
column numbers M, N and the maximum disparity search range

1083-4419/04$20.00 © 2004 IEEE



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 1, FEBRUARY 2004 761

Image :
Rons :
™ L S ; )
Qo\
-6 0
Image Columns (N) TR
(@
T
(b)
Fig. 1. [Illustration of the 3-D correlation coefficient volume for panoramic

stereo images obtained after using the fast correlation method. (a) 3-D volume.
(b) Same volume in cylindrical shape.

Fig. 2. One slice of the 3-D cylindrical volume shown in Fig. 1.

D as shown in Fig. 1(a). The algorithm used for the fast correlation
calculation is based on the moving average or moving window’s
technique. The complexity of the fast algorithm for similarity measure
is O(M N D), which is independent of the correlation window size,
similar to the standard stereo cases as in [21] and [24]. For detailed
description for fast correlation calculation, see [24] or [25].

As the inputs are panoramic stereo images, the 3-D correlation coef-
ficient volume obtained actually forms a cylindrical volume as shown
in Fig. 1(b). We will find a maximum surface within this cylindrical
volume for disparity estimation.

C. Circular Shortest Path in 2-D Matrix

In panoramic stereo matching, a horizontal slice of the cylindrical
volume as shown in Fig. 2 has the property that the left most and
the right most columns are connected. This 2-D slice can also be
shown in the format of a cylindrical surface as in [26]. In traditional
stereo matching, dynamic programming (DP) techniques have been
used to obtain shortest paths to estimate disparities [24], [27], [28].
For panoramic stereo matching, we can use circular shortest path
(CSP) extraction technique to obtain a CSP in each 2-D correlation
matrix (sized NV D, as shown in Fig. 2) so that the starting and ending
positions of this path are connected.

Five algorithms (MSA: multiple search algorithm; IPA: image
patching algorithm; MBTA: multiple backtracking algorithm; combi-
nation algorithm of IPA and MBTA; and approximate algorithm) in
[26] and one (BBCSP: circular shortest path by branch and bound)
in [29] have been developed for CSP extraction on regular grids or
images when the left and the right columns of the grid are neighbors.
The basic algorithm within these five algorithms is the use of DP
technique. MSA is the slowest as multiple DP (D times) operations are

necessary. The complexity of this algorithm is O(N D?). BBCSP is
faster than MSA but slower than other methods. The BBCSP algorithm
gives O(ND"®) average running time. The combination algorithm
of IPA and MBTA takes roughly the same time as [PA, MBTA, or the
approximate algorithm and achieves a higher probability and speed
in finding the optimum circular shortest path. These algorithms have
the computation complexity of O(N D). The algorithms used for [PA
and MBTA are essentially dynamic programming algorithms. We will
use the combination algorithm of IPA and MBTA for our panoramic
stereo matching as it is fast and guarantees to find a circular path.

The patching of a 2-D matrix for the IPA algorithm is carried out
in the z-direction on the left and the right sides of one slice of the
cylindrical volume. The values of the patched regions come from the
input matrix itself. A shortest path is obtained from this patched matrix,
and a CSP may be extracted from the 2-D slice of correlation matrix.
For detailed description of the IAP algorithm, see [26]. The steps of the
IPA algorithm for CSP extraction for a 2-D slice of correlation matrix
are as follows.

1) Patch the input 2-D matrix on the left and the right sides with
portions of the input matrix itself to obtain a patched matrix.
2) Perform ordinary shortest path extraction using ordinary dy-
namic programming on the patched matrix.
3) Extract the shortest path which lies inside the original matrix.
When carrying out the ordinary shortest path extraction using dy-
namic programming, we can also store the cost value for each node
and the corresponding predecessor matrix. From each node on the last
column, we can backtrack a path from this node to a certain node on
the first column. This path has a certain cost. If the starting and the
ending positions of this path are neighbors, then we say this path is a
possible CSP. We backtrack all the nodes on the last column, and we
may find several possible CSPs. We can then choose the CSP with the
minimum cost as the final result. For detailed description of the MBTA
algorithm, see [26]. The steps for the MBTA algorithm are as follows.

1) Carry out ordinary dynamic programming to build a cost matrix
and a predecessor matrix.

2) Carry out backtracking from each position on the last column,

and record the cost for a circular path.

3) Choose a circular path with the minimum cost as the result of

this algorithm.

The combination algorithm involves running each of the IPA and
MBTA algorithms once. That is using the IPA algorithm to find a path,
if this path is not circular, we use the path obtained by the MBTA algo-
rithm. If the path obtained from running the IPA algorithm is circular,
we choose the path with the minimum cost from the IPA and the MBTA
algorithms.

One can simply use the CSP extraction algorithm mentioned ear-
lier to obtain a CSP for each slice of the 3-D cylindrical volume inde-
pendently for the disparity estimation of the panoramic stereo images.
However, this approach does not take information from neighboring
scanlines into account (apart from the windowing effect during corre-
lation). In the following subsection, we use this CSP extraction tech-
nique to obtain a 3-D surface in the cylindrical volume for panoramic
stereo matching. We intend to obtain a maximum 3-D cylindrical sur-
face rather than a number of independent CSP’s.

D. Maximum Surface in a Cylindrical Volume

There are a number of researchers who obtain ordinary stereo dis-
parity from 3-D correlation volume. Roy and Cox [30] and Chen and
Medioni [31] use 3-D volume information to find disparities. The av-
erage running time for Roy and Cox’s algorithm is O((M N)*2D*-3)
[30]. The typical running time for 256 x 256 images is anywhere be-
tween 1 to 30 min on a 160-MHz Pentium machine depending on the
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Fig. 3. Cylindrical maximum surface that gives the maximum accumulation
of cross correlation values in the cylindrical volume. The vertical rectangle in
the figure shows one vertical slice at position j of the cylindrical volume.

depth resolution used. There was no mentioning about the speed issues
in [31]. Yang and Yuille proposed a nonlinear filter for detecting dis-
parity surface in a 3-D volume [32]. They first apply the filter to the
3-D volume and then simply use maximum picking. Sun developed a
fast two-stage dynamic programming technique for maximum surface
extraction in a 3-D volume for ordinary stereo matching [25].

In this subsection, we will approach the issue of obtaining the
panoramic stereo disparity map from the cylindrical shaped 3-D
correlation coefficient volume using a CSP technique, which is
computationally efficient. A cylindrical maximum surface that cuts
through the cylindrical volume from the top to the bottom as shown
in Fig. 3 is obtained in two steps. The cylindrical maximum surface
gives the maximum summation of the correlation coefficients along
the surface inside the cylindrical volume.

Now, we describe our algorithm for the maximum surface extraction
in a 3-D cylindrical shaped volume of size M N D. Assume C'(i, j, d) is
the correlation coefficient value in the 3-D volume at position (i, j, d),
where 0 < i < M,0< j < N,and 0 < d < D (i, j are the indices
of image rows and columns; and d is index for disparity). This C is
obtained in Section II-B. Note that plane j = 0 and plane j = N — 1
in the 3-D volume are neighboring planes. In the first step, we obtain
a temporary volume Y, which contains the maximum value accumu-
lation from top to bottom. Volume Y (i, 5, d) contains the accumulated
values of the maximum cross correlation coefficients along each ver-
tical slice at position j in the same volume from top to bottom. One of
these vertical slices at position j is shown in Fig. 3. For the top hori-
zontal slice of the volume, i.e., when i = 0

Y(0,4,d) = C(0,4,d) (D

i.e., the top (horizontal) slice of Y is a copy of the top slice of C'. For the
remaining horizontal slices of the volume Y, the value at each position
is obtained using the following recursion:

Y(Zu]~ d) = C(lmﬁ d) + max Y'(l - 1a]~d + t) (2)

t:]t|<p

where p determines the number of local values that need to be checked.
Ifp = 1, only three values in Y need to be evaluated. These three values
areY(i—1,5,d—1),Y(i—1,j,d),andY (i —1,5,d+ 1).Ifp > 1,
more than three values need to be checked. The recursion in (2) gives
the maximum accumulation of C' in the vertical direction for each and
every j. For each j, we have one vertical slice. At the end of recursion
for every vertical slice from top to bottom, we have the accumulated
maximum values in volume Y.

Fig. 4. Circular shortest path obtained for each horizontal slice of the YV
volume. The horizontal axis is the image column. The vertical axis is the
disparity. The dashed curves are the path obtained in the previous slice. The
solid curves are the path obtained in the current slice. The top drawing gives
2-D matrix form while the bottom drawing shows a ring form.

@ (b)

Fig. 5. Different disparity results obtained for a portion of the panoramic
stereo images. (a) Disparity obtained using CSP for each horizontal slice of the
3-D correlation volume. (b) Disparity obtained using the cylindrical maximum
surface technique.

In the second step, we use volume Y to obtain the disparity map
for the input panoramic stereo images. In step one, while we obtain
Y, the maximum accumulation is only carried out along the vertical
direction. In this step, we carry out a second accumulation horizontally
based on Y. Starting from the bottom of the 3-D volume Y, we select
the 2-D horizontal slice with : = M — 1. From this 2-D matrix with size
N D, aCSP, as illustrated by the dashed line in Fig. 4, is obtained using
the combination of the IPA and the MBTA algorithms. The summation
of the values along this path gives the maximum value while making
sure that a circular path is obtained. This obtained path is related to
the disparities for the last or bottom row of the input panoramic stereo
images. The distance of each point along this path to the middle dashed
line in Fig. 4 is the obtained disparity for the same x-positioned point
of the input image.

We then move from the bottom slice upwards for obtaining CSPs.
When calculating the disparity for row number i — 1, we use the result
obtained for row number ¢. We now select the horizontal slice number
¢ — 1 of the 3-D volume Y and mask out those values outside the gray
region that are p position away from the circular shortest path obtained
from row number ¢, as shown in Fig. 4. Then, a new CSP, which is con-
strained to lie inside this gray region, is obtained in this matrix ring.
This process of obtaining a CSP is repeated for each horizontal slice of
Y until the disparity for the first row of the image is obtained. When ob-
taining the CSP for the very bottom slice, the whole 2-D matrix should
be used without masking out any pixel values.
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Fig. 6. First and second images are the left and right input images [18]. The third image gives the matching results using our method described in this paper.

In a process of finding a shortest path in an image or 2-D matrix
by the use of ordinary dynamic programming technique, two steps are
usually involved. The first step is the value accumulation or distance
transformation, say, from left to right of the image. The second step
is the backtracking from an optimum point in the last column. Our
accumulation process for obtaining the Y (7, j, d) volume is similar to
the value accumulation or distance transformation step for an ordinary
dynamic programming process. In 2-D case, one finds a single point in
the last column to start the backtracking process. In our 3-D case, we
find a single CSP in the last slice of the Y (¢, j, d) volume to backtrack.
The recursion for obtaining Y does not have to start from the top. It
can start from the bottom. If the process of obtaining Y starts from the
bottom and finishes at the top, then the process of obtaining a circular
shortest path should start from the top of Y. The 3-D surface obtained
from the 3-D volume should be very similar, if not exactly the same,
whether one starts the recursion from the top or from the bottom of
the volume. Pixels with different disparity results if different starting
recursions are used may come from tie values during the DP process.

Occlusion is not explicitly modeled in our matching process. There-
fore, if there are regions with large disparity jumps, a smooth transition
may result. Path finding techniques such as those described in [28] can
be used to model occlusion. This will increase the computational cost.

Putting all the CSPs obtained for each of the scanline together form
a 3-D cylindrical surface within the 3-D volume of Y. Because suc-
cessive CSP for each scanline is obtained in the neighborhood of the
previous path position, the cylindrical maximum surface gives more
consistent disparities.

The result of obtaining this cylindrical surface is that the summa-
tion of the correlation values on this surface is maximum. Note that
the surface has certain smoothness constraints that during the process
of obtaining this surface the neighborhood search is only carried out
around the neighboring 2p + 1 points.

III. ALGORITHM STEPS

It has been shown that a multiresolution or pyramid data structure
approach to stereo matching is faster than one without multiresolution
[33], as the search range in each level is small. Besides fast computa-
tion, a more reliable disparity map can be obtained by exploiting the
multiresolution data structure. The upper levels of the pyramids are
ideal to get an overview of the image scene. The details can be found
down the pyramid at higher resolution. Subpixel accuracy can be ob-
tained by fitting a second degree curve to the correlation coefficients in
the neighborhood of the disparity, and the extrema of the curve can be
obtained analytically.

The steps of our proposed algorithm for fast panoramic stereo
matching are as follows.

1) Perform image padding for panoramic stereo images.

2) Build image pyramids with P levels (from O to P — 1), with
the reduction ratio of » (e.g., r = 2), from the original left and
right images. The upper or coarse resolution levels are obtained
by averaging the corresponding r X r pixels in the lower or finer
resolution level.

3) Initialize the disparity map as zero for level k = I — 1, and start
panoramic stereo matching at this level.

4) Perform panoramic image matching using the method described
in Section II, which includes the following.

a) Perform fast ZNCC to obtain the correlation coefficients
and build a 3-D correlation coefficient volume.

b) Use the cylindrical maximum surface technique to find the
maximum surface, which will then give the disparity map
as described in Section II-C and D.

5) If & # 0, propagate the disparity map to the next level in the
pyramid using bilinear interpolation, set & = k — 1, and then go
back to Step 4; otherwise, go to Step 6.

6) Fit parabola function to obtain sub-pixel accuracy if necessary.

7) Display disparity map.

IV. EXPERIMENTAL RESULTS

This section shows some of the results obtained using our method de-
scribed in previous sections. The input left and right panoramic stereo
images are assumed to be rectified epipolar images.

Fig. 5 shows the different results obtained for a portion of a
panoramic stereo images by using just the CSP algorithm or the
cylindrical maximum surface technique. Fig. 5(a) is the result ob-
tained using the CSP algorithm for each horizontal slice of the 3-D
correlation volume independently. Fig. 5(b) gives the result obtained
using the cylindrical maximum surface technique. Note that there
is a white streaking around the top left region and a dark streaking
around the bottom right region in Fig. 5(a). These streakings appear
mainly because there is not much constraints between neighboring
epipolar lines if CSP is applied to each slice of the 3-D correlation
coefficient volume. Fig. 5(b) gives a smoother result due to the use of
the cylindrical maximum surface technique. Only one level of image
pyramid is used for this test. If multiple levels of image pyramid
are used, as in Fig. 6 and Fig. 7, the difference between the results
obtained by using just the CSP algorithm or the cylindrical maximum
surface technique will become smaller.

Figs. 6 and 7 give some of the results obtained by using our methods
described in previous sections. In each of these figures, the first two
images are the left and the right input panoramic stereo images. The
third images are the disparity map obtained. The values of the dispari-
ties have been normalized to the range of [0, 255] for viewing purposes.
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Fig. 7. First and second images are the left and right input images. The third image gives the matching results using the method described in this paper.

The running time for the algorithm on a 1324 x 120 image is about
0.33 s on a 1.7-GHz Linux PC. The size of the correlation window
used for the images is 9 X 9. The reduction ratio r used in the pyramid
generation process is 2. Levels of pyramid is 3. Disparity search range
is [—13, 4+13]. Disparity search range is a parameter to be provided by
users. The density of our disparity field is 100%. We are showing the
disparity for every points of the stereo images. The work by Li et al.
[15] for depth estimation from multiperspective panoramas by the use
of tensor voting techniques seems to give good results. Their algorithm,
however, takes about 60 min on a Pentium III 550 MHz PC.

The reliable results of our algorithm are achieved by applying the
combination of the following techniques.

1) Multiresolution or coarse-to-fine strategy is used.

2) The ZNCC similarity measure is used, which is independent of
differences in brightness and contrast due to the normalization
with respect to mean and standard deviation. Because the cor-
relation step is window based, the correlation value (similarity
measure) may not be accurate at object boundaries where oc-
clusion or depth changes occurs. This inaccurate result can be
improved by using multiple window techniques at object bound-
aries.

3) The correlation coefficient value is used as input to the CSP ex-
traction stage. A number of approaches that use dynamic pro-
gramming method just use the intensity value along the left and
right epipolar lines. These approaches do not take the neighbor-
hood information from the successive scanlines into account.

4) CSP technique is used to find a maximum surface in the cylin-
drical correlation volume. By using the cylindrical maximum
surface technique on the input correlation coefficient volume,
one will obtain a more smooth surface within the volume. The
maximum surface method takes all the information into account,
rather than work individually for each pair of the epipolar lines.
The left and the right columns are also properly constrained. Cur-
rently, we do not model occlusion in our matching process. In ad-
dition, as our matching is area correlation based, if the input im-
ages contains large regions without texture, our algorithms may
not work like most of other matching algorithms.

The fast computational speed of our algorithm is achieved in con-
junction with some of the factors mentioned above for achieving relia-
bility of the algorithm. Some of the factors are as follows

1) Fast ZNCC is used.

2) Apart from having the advantages of increasing the reliability,
the coarse-to-fine approach is also faster than one without using
it.

3) Computationally efficient two step techniques are used to find a
cylindrical maximum surface in the 3-D cylindrical correlation
volume.

V. CONCLUSIONS

We have developed a fast panoramic stereo matching method using
cylindrical maximum surface techniques together with fast correlation
calculation in the coarse-to-fine framework. The cylindrical maximum
surface is obtained from the 3-D correlation volume using our two step
techniques: the vertical accumulation step to obtain the maximum ac-
cumulation volume and, based on this volume, a second step to ob-
tain the cylindrical maximum surface using CSP techniques. By using
the ZNCC similarity measure together with the multiresolution scheme
and cylindrical maximum surface techniques, the reliability of the algo-
rithm was increased. The typical running time for a 1324 x 120 image
is about 0.33 s. The algorithm was shown to be fast and reliable by
testing on several different types of real images.
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