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Abstract

Shortest path algorithms have been used in a number of applications such as crack detection, road or linear feature extraction
in images. There are applications where the starting and ending positions of the shortest path need to be constrained. In this
paper, we present several new algorithms for the extraction of a circular shortest path in an image such that the starting and
ending positions coincide. The new algorithms we developed include multiple search algorithm, image patching algorithm,
multiple backtracking algorithm, the combination of image patching and multiple back-tracking algorithm, and approximate
algorithm. The typical running time of our circular shortest path extraction algorithm on a 256× 256 image is about 0:3 s on a
rather slow 85 MHz Sun SPARC computer. A variety of real images for crack detection in borehole data and object boundary
extraction have been tested and good results have been obtained. ? 2002 Pattern Recognition Society. Published by Elsevier
Science Ltd. All rights reserved.

Keywords: Circular shortest path; Dynamic programming; Multiple search algorithm; Image patching algorithm; Multiple backtracking
algorithm; Combination algorithm; Approximate algorithm

1. Introduction

In a weighted graph or network, it is frequently desired
to 8nd a shortest path between two nodes. The shortest path
is de8ned as a path from one node to the other such that
the sum of the weights of the arcs on the path is minimised.
Most algorithms or applications in the graph framework use
a labelling approach, in particular the one due to Dijkstra
[1,2].

Buckley and Yang developed a regularised shortest path
extraction algorithm for rectangular images [3]. The algo-
rithm uses dynamic programming (DP) techniques for short-
est path extraction. They applied their algorithm to borehole
data=image for crack detection and also to satellite images
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for road extraction. The shortest path they are interested in
is either the path running from top to bottom or left to right.
There is no constraint on the starting and ending positions of
the path. A number of authors used dynamic programming
technique to obtain a shortest path in a rectangular matrix for
stereo disparity measurement [4–7]. All these applications
impose no constraints on the starting and ending positions
of the shortest path.

In the applications of inspection of open or equipped
boreholes, borehole geophysicists record and analyse mea-
surements of physical properties made in test holes. Probes
that measure diDerent properties are lowered into the bore-
hole to collect continuous or point data that is graphically
displayed as a geophysical log. Borehole geophysics is
also used in groundwater and environmental investigations
to obtain information on well construction, rock lithology
and fractures, permeability and porosity, and water quality
[8,9]. These applications include fracture identi8cation and
orientation, stratigraphic and structural dip analysis. The
borehole acoustic televiewer resembles an optical televi-
sion camera system in producing a full 360◦ image of the
borehole walls. The signals are presented as continuous
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Fig. 1. (a) A 360◦ borehole image with cracks, (b) image in (a) shown in a cylindrical format.

images. In certain situations, the input images wrap around,
e.g. the left and the right edges are actually neighbouring
columns. Fig. 1(a) shows a full 360◦ borehole image with
cracks in it. As the image is a 360◦ circular image, the left
and the right boundaries of the image are actually neigh-
bouring columns. This image can be shown in a cylindrical
format as in Fig. 1(b). In the example shown in the 8gure, a
closed or circular shortest path (CSP) should be extracted.
That is the starting and the ending positions of the path
should be at neighbouring points.

In some image analysis applications, object boundaries
need to be extracted [10]. In these applications, it is nec-
essary to make sure that the boundary extracted are closed
contours. Panoramic stereo images are becoming available
for 3D applications. In 360◦ panoramic stereo images, the
left and the right columns are connected with each other.
Therefore in the stereo matching process, it is necessary to
take this constraint into account. This can be achieved by
obtaining a circular path in the correlation coeGcient matrix.

In this paper, we address the issue of obtaining a CSP in
an image or a regular grid for a number of applications. The
rest of the paper is organised as follows: Section 2 gives a
brief review for ordinary shortest path extraction algorithms.
Section 3 presents 8ve new methods for CSP extraction on
images. Section 4 shows the experimental results obtained
using our CSP extraction methods applied to a variety of
applications. Section 5 gives concluding remarks.

2. Ordinary shortest path algorithms: a brief review

This section gives a brief review on ordinary shortest
path extraction algorithms using labelling algorithms and
dynamic programming. The problem is to 8nd a path from
the left side to the right side of an image or grid such that
the cost of the path is minimum. The cost of the path is
the sum of the costs along the path. As an example, Fig. 2
illustrates the possible positions that a path from left to right
can go from a point to its neighbours on the grid. “B” is a
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Fig. 2. Neighbour points that a path can go from “A” and “B” to
certain points in the next column.

point on the top boundary of the image; and “B2” and “B3”
are the possible positions a path can arrive from point “B”.
The cost of an arc in an image or regular grid is de8ned as
the value of its starting position. For the arc connecting “B”
and “B3”, the cost of the arc is the image value at position
“B”. If a point is not on the top or the bottom boundary (e.g.
“A”), there will be three possible positions (“A1”, “A2”,
“A3”) that the path can go from point “A”. If the top and
bottom rows are also neighbours, “B1” is also a possible
position for a path to reach from point “B”. If only the left
and the right columns of the grid are neighbours, we can
wrap the grid on to a cylindrical surface, so that the left and
the right columns are connected. If the top and the bottom
rows are also neighbouring rows, we can imagine to bend
the cylindrical shape to make the top and bottom touch, so
that a toroid shape is formed.

2.1. Shortest path extraction algorithm

A huge number of scienti8c papers are devoted to the
shortest path problem. We refer to Refs. [1,2] for a general
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view of the problem and of the most eGcient algorithms
proposed.

Let G= (N; A) be a directed graph, where N is the set of
nodes of cardinality n, and A is the set of arcs of cardinality
m. With each arc (i; j)∈A, a cost cij is associated. Given an
origin, or root, r, the shortest path tree problem consists of
8nding a spanning directed tree T∗ rooted at r such that, for
each i∈N , the path from r to i in T∗ is a minimum cost path
in G. The tree T∗ is a particular collection of shortest paths
Pri, for every i �= r. Given the root, r, and the destination
node, s, the single pair shortest path problem consists of
8nding a minimum cost path Prs from r to s in G.
The single pair shortest path problem is not easier than

the shortest path tree problem, at least for the computational
analysis; in fact, in the worst case, to 8nd Prs one has to
build the entire tree T∗. Almost all the algorithms have a
common scheme: starting from an initial tree T , the algo-
rithms iteratively update it until T∗ is found. To each node
i∈N , a label di is associated, providing the cost of the path
from r to i, belonging either to the current tree or to a pre-
vious one; for that, di is in general an upper bound of the
cost of the path in the current tree T .

The labels allow to compare pair of paths; let (i; j) be an
arc and Pri and Prj be two paths of cost di and dj , respec-
tively. The cost of path Pri ∪ {(i; j)} is di + cij; if the two
costs are such that

di + cij¿dj;

we say that the Bellman’s condition for arc (i; j) is satis8ed;
otherwise Pri ∪ {(i; j)} results to be better than Prj , and by
changing the predecessor node of node j, say p(j), in the
tree T , with the node i, we remove from T the arc (p(j); j)
and we insert (i; j).

A node i for which it is possible that the Bellman’s con-
ditions are not satis8ed for all the arcs (i; j) outgoing from
it is said a scan eligible node. The algorithms handle a set
of scan eligible nodes Q in such a way that the algorithm
iteratively select one of its node to check all the outgoing
arcs to try to improve the current tree T . It is proved that,
when the Bellman’s conditions are satis8ed for all the arcs,
then the current tree T is the minimum cost one.
A typical iteration is the following:

select and remove a node i from Q

for each (i; j) outgoing from i such that di+cij¡dj do
begin

dj:=di + cij;
p(j):=i;
if j �∈ Q then Q:=Q ∪ {j}

end

The Dijkstra-like approach is obtained when the node
selected at the beginning of each iteration is the one with
the minimum label among the nodes belonging to Q:

i = argmin{dv : v∈Q}:

When the arc costs are non-negative, the Dijkstra’s selection
ensures that every node will be inserted into, and removed
from, Q exactly once; so, the total number of checks of the
Bellman’s conditions is m. The costly operation is the selec-
tion of the minimum label node i which has to be repeated n
times. To speed up these operations, special data structures,
such as heaps and=or buckets, are used to implement Q.
The Dijkstra-like approach is particularly suitable for the

single pair shortest path problem; in fact, it is easy to prove
that once the destination node is selected fromQ, the shortest
path Prs has been obtained. Another possible speed up is to
work with path searches in parallel, the 8rst starting from
r and the other starting from s and moving “back” along
the arcs: when a node has been selected from both the scan
eligible sets, with few additional operations the minimum
cost path is obtained [11].

A special method is used when the directed graph G is
acyclic, i.e. when the nodes i∈N can be re-numbered in
such a way that for every arc (i; j)∈A it is i ¡ j. In this
case, the shortest path problem is easily solved by examining
the nodes according to the natural order i=1; : : : ; n, and for
each of them apply the following typical iteration:

for each (i; j) outgoing from i such that di + cij ¡dj do
begin

dj:=di + cij;
p(j):=i

end

Regardless of the sign of the arc costs, the number of
operations grows linearly with m, i.e. the number of arcs.
So, it is the most eGcient algorithm for acyclic graphs.

The computation shown above is organised in a “forward”
form. That is for a given node i, all the nodes in the next
layer connected to i are checked and, possibly, updated. The
same computation, following the same nodes order, can be
done in “backward” form, by directly applying theBellman’s
equation:

dj:=min{di + cij : (i; j) enters j}; j = 2; : : : ; n: (1)

The “backward” approach on acyclic graphs leads to the
classical dynamic programming algorithm. In later sections
of the paper, we will use the “backward” approach, i.e. the
dynamic programming algorithm, for shortest path extrac-
tion.

2.2. The grid structure

The shortest path problem in the grid is a problem on an
acyclic graph. In fact, from an array of u rows and v columns,
we can derive a directed graph G=(N; A), where each node
i∈N is a pair [h(i); k(i)] where h(i) indicates the row and
k(i) indicates the column of the element represented by i.
The number of nodes is n= uv.

An arc (i; j)∈A exists if k(j)=k(i)+1 and h(j)=h(i)+�,
where � =−1; 0; 1 but the extreme cases in which h(i) = 1
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or =u, the cost of arc (i; j) is set to the entry associated to
the pair [h(i); k(i)], i.e. all the arcs leaving node i have the
same cost, and it is the value at position [h(i); k(i)]. The
total number of arcs is m= (3u− 2)(v− 1)¡ 3n if the top
and the bottom rows are not connected. If the top and the
bottom rows are connected, m= 3u(v− 1)¡ 3n.
With this transformation the shortest path problem on

the grid is mapped into a shortest path problem on a
classical graph. By using this transformation, we can see
that our problem has another special characteristic: the
graph G is a stable acyclic sequential layered graph. A
graph is stable and layered if the set of nodes N can
be partitioned into subsets (layers) such that there ex-
ist arcs between nodes belonging to diDerent layers and
do not exist arcs between nodes belonging to the same
layer; moreover, it is sequential if the layers can be or-
dered in a sequence {L1; L2; : : : ; Lv} in such a way the
arcs connect two adjacent layers. Finally, it is acyclic
when the arcs go only from nodes of a layer to nodes
belonging to the following layer. Our graph has in-
deed these properties (and others that we will exploit
later), in fact each column of the grid is a layer and
the arcs go from one column (layer) to the following
one.

Let us suppose that we have to solve the shortest path
problem from the nodes in layer L1 to the nodes in the last
layer Lv. The best approach is to exploit the characteristics
of the graph by analysing one layer at a time and, for each
node j of that layer, by setting the optimal label value dj
by applying the Bellman’s equation (1). The resulting al-
gorithm, based on the direct application of the Bellman’s
equation (1), is

Procedure Layer Grid():
begin {initialising the labels of nodes of L1}

for each j∈ L1 do
begin

dj:=0;
p(j):=nil;

end
for h:=2 to v do
for each j∈ Lh do
begin {working on layer Lh}

dj:=min{di + cij : (i; j) enters j};
p(j):=argmin{di + cij : (i; j) enters j}

end
end.

3. Circular shortest path

The algorithms described in the previous section for or-
dinary shortest path extraction impose no constraint about
the starting and ending position of the path. From now on,
we assume that the image or grid is circular, that is the 8rst

and the last columns are neighbours. In this section, we will
present several new algorithms for CSP extraction where the
starting and the ending positions of the obtained path are
connected. A circular path is a path from the 8rst column
to the last column when the starting and ending position are
connected. A CSP is a circular path when its cost among
all the circular paths are minimum. Fig. 3 gives an exam-
ple showing the diDerent paths obtained using the ordinary
shortest path and a CSP extraction algorithm (to be described
later). The “∗” symbols in the 8gure indicate the positions
of the shortest paths. The cost for the ordinary shortest path
is 666, while the cost for the CSP is 702. The path obtained
using the ordinary shortest path technique is shown in Fig.
3(a). The positions of the paths are: (Ba)→ (Bb)→ (Bc)→
(Cd) → (De) → (Df) → (Dg) → (Dh) → (Ei) → (Fj) →
(Ek) → (Fl). The capital letters indicate row numbers and
the lower case letters indicate column numbers. The starting
position (Ba) and the ending position (Fl) are not directly
connected. The path obtained using the CSP technique is
given in Fig. 3(b). The positions of the paths are: (Da) →
(Eb) → (Ec) → (Fd) → (Ee) → (Df) → (Dg) → (Dh)
→ (Ei) → (Fj) → (Ek) → (El). The starting and ending
positions (Da) and (El) are actually neighbouring points.

3.1. Multiple search algorithm

To 8nd the required CSP, one can run the ordinary shortest
path algorithm for acyclic graphs u times (u is the number
of rows in the image or grid), one for each node [h; 1] of
the 8rst column as origin. Once computed the shortest paths
for all the nodes of the last column, we select as the best
CSP the least cost path among the ones terminating at the
nodes [h−1; v], [h; v] and [h+1; v] (to satisfy the constraint
that the starting and ending positions are neighbours). At the
end of the u shortest path computations, we can select the
path with the least cost to be our result. This is our multiple
search algorithm (MSA).

Fig. 4 shows that for any particular given position “C”
on the left boundary of the image, the three possible end-
ing positions which are essentially neighbours of “C” are
“C1”, “C2” and “C3”. If the dark positions of the image are
assigned to have large values, ordinary dynamic program-
ming technique can be used to 8nd the required shortest path
starting from point “C” and ending at one of its “neighbour-
ing” points (“C1”, “C2” or “C3”). We also need to change
point “C” and “C1”, “C2” and “C3” to all the other posi-
tions on the left column and right column, and 8nd all the
corresponding paths. Each of the path has a cost associated
with it. The one which has the minimum cost is the path
that we want to extract.

The steps of our MSA algorithm for CSP extraction
are:

(1) Set the start position “C” from the top row of the
image.
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Fig. 3. Examples showing the diDerent paths obtained using ordinary and circular shortest paths. The values in the table are randomly
generated. It is assumed that the column “a” and column “l” are neighbouring columns. (a) Shortest path without constraint. The starting
and ending positions (Ba) and (Fl) are not neighbours. (b) Shortest path with constraint, i.e. circular shortest path. The starting and ending
positions (Da) and (El) are neighbours.
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Fig. 4. Constraining the ordinary shortest path search.

(2) Assign special values to the dark positions of the left
and the right boundaries of the input image as shown
in Fig. 4.

(3) Perform ordinary shortest path extraction using DP on
the modi8ed image.

(4) Record the cost of the path, and select the current least
cost path as the result.

(5) Move to the next row of the image and go to Step 2
unless the current row is the last.

(6) Display CSP.

This method will guarantee to 8nd the path which satis-
8es our constraints. The disadvantage of this method is

that the ordinary shortest path algorithm for acyclic graphs
has to be run u times. Therefore, it has a time complexity
O(u2v).

3.2. Image patching algorithm

In this subsection, we will present a fast algorithm for
obtaining the required CSP by working with patched images.
We call this the image patching algorithm (IPA).

The size of the patches could depend on the type of ap-
plications or the content of the images. If an image contains
strong circular paths, the starting and ending positions of a
shortest path obtained by just using the ordinary dynamic
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Fig. 5. Image patching for fast CSP extraction. (a) Drawings show-
ing the patching process; (b) illustration using a real image. Dark
lines in this image are arti8cial. It is used to show the region
boundaries.

programming technique may not be too far from the con-
strained CSP. In this situation, the size of the patches needed
can be small. Otherwise, if an image contains weak circular
paths, the starting and ending positions of a shortest path
obtained by just using ordinary dynamic programming tech-
nique may be far from a constrained CSP. In this case, a
stronger constraint, or larger size of patches may be needed.

Fig. 5 shows the image patching process for obtaining the
CSP. Patch-1 and Patch-2 are parts of the original image.
Copy-of-Patch-1 and Copy-of-Patch-2 are copies of the im-
age regions Patches 1 and 2. These two copies of the local
image regions are attached to the original image to build
a larger image. Image patching is only performed in the
X -direction of the image, as we need to 8nd the CSP from
left to right of the image. If a shortest path from top to bot-
tom of the image is needed, the patching can be done at the
top and the bottom of the image. Fig. 5(a) illustrates the
patching process, and Fig. 5(b) is an example of a patched
image. Dark lines are drawn in Fig. 5(b) to show the image
boundaries. The left side of the 8rst dark line is the same
region for Patch-2. The right side of the second dark line is
the same region for Patch-1.

The image patching method does not guarantee to 8nd
the required path. However, many synthetic and real image
tests all produce correct results. If a CSP is not found, we
can iterate the process of 8nding CSP by using a diDerent
size of the patch, or using a multiple back-tracking algorithm
(MBTA) to be described in the following subsection. Or

if the application is not time critical, the MSA method can
be used. The main advantage of the IPA algorithm is its
speed, as it only needs one run of the ordinary shortest path
extraction algorithm on the patched image. The complexity
of the algorithm is O(u(v+ k)), where k is the width of the
added patches.

The steps of our IPA for CSP extraction are:

(1) Patch the input image on the left and the right sides
with portions of the input image itself (say one-eighth
of the image width). The size of the patches depends
on the application. If the path is strong or very clear
in the image, the size of the patches can be smaller.
Otherwise, the width of each patch can be set to half of
the width of the input image.

(2) Perform ordinary shortest path extraction using DP on
the patched image.

(3) Extract the shortest path which lies inside the original
image.

(4) Check if the obtained path satisfy the circular constraint.
If so, go to Step 5; otherwise, go to Step 1 with a
diDerent patching size, or using MBTA or MSA.

(5) Display CSP.

3.3. Multiple back-tracking algorithm

In this subsection, we will present another algorithm based
on the ordinary shortest path algorithm by performing mul-
tiple backtracking. We call it the MBTA. When carrying
out the ordinary shortest path extraction using dynamic pro-
gramming, we have in storage the cost value for each node
and the corresponding predecessor matrix. From each node
on the last column, we can backtrack a path from this node
to a certain node on the 8rst column. This path has a cer-
tain cost. If the starting and the ending positions of this path
are neighbours, then we say this path is a possible CSP. We
backtrack all the nodes on the last column, and we may 8nd
several possible CSPs. We can then choose the CSP with the
minimum cost as the 8nal result. We have found that on an
image or regular grid one can almost always 8nd a circular
path although this circular path may not be the CSP.

To speed up the phase of checking whether a path is a
circular one, it is possible to associate to every node [h; k],
together with the label dh;k and the predecessor nodep(h; k),
also the knowledge of the 8rst node [r′; 1] of the current
path ending into [h; k]. In fact, we introduce, for every node
[h; k], the >rst node function f(h; k). To do that, it is enough
to initialise f(h; 1)=h; h=1; : : : ; u, and each time the label
of [h; k] is improved from a node [h′; k − 1], it is enough to
set, together the predecessor p(h; k):=h′, also the 8rst node
f(h; k):=f(h′; k − 1).

Then, at the end, when the minimum label node [s′; v] is
selected, the 8rst node [r′; 1], with r′ =f(s′; v), is available
without moving back along the minimum cost path.

Fig. 6 shows the results of the CSP extraction using the
MBTA. Fig. 6(a) is the input random image; Fig. 6(b) is a
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Fig. 6. A random image and its CSP. (a) A random image; (b) a matrix showing each pixel connected to a point on the 8rst column; and
(c) CSP overlaid on the random image.

matrix (8rst node function) containing information for each
pixel as to which point in the 8rst column it is connected to;
and Fig. 6(c) shows the CSP obtained overlaid on the input
image.

It can be observed from Fig. 6(b) that with the increase
of the column index of the image, the number of colours
decreases. This means that the possible number of CSP is
reduced. For a very thin image, the shape of the 8rst column
matrix is similar to that of the left part of Fig. 6(b). One
may have many possible CSP. For a very long image, the
number of colours connected to the right edge of the image
is smaller. Therefore, the possible number of CSP is smaller.
The MBTA algorithm guarantees to 8nd a circular path. But
this circular path may not be the CSP.

The steps for our MBTA algorithm are:

(1) Carry out ordinary dynamic programming to build the
cost matrix, and the predecessor matrix.

(2) Carry out backtracking from each node on the last col-
umn and record the cost for a circular path.

(3) Choose a circular path with the minimum cost as the
result of this algorithm.

3.4. Combination algorithm

The IPA algorithm provides a fast way of 8nding “cir-
cular” shortest paths. But the path obtained is not always
circular. The MBTA algorithm guarantees to 8nd a circular
path, although this path may not be the CSP. We can com-
bine these two algorithms as the IP&MBTA algorithm to
increase the chance of 8nding the true CSP in an image or
grid. This will involve running each of the IPA and MBTA
algorithms once. That is using the IPA algorithm to 8nd a
path, if this path is not circular, we use the path obtained by
the MBTA. If the path obtained from running the IPA algo-
rithm is circular, we choose the path with the minimum cost
from the IPA and the MBTA algorithms. Many real images

tests have shown that the combination algorithm produces
all the correct CSP.

3.5. Approximate algorithm

In most real cases it is enough to heuristically 8nd a cir-
cular path, not necessarily optimum, to correctly process the
image. The key point is to guarantee that the best circular
path found by the heuristic is not far, in terms of “cost”, from
the optimal circular path. To ensure that the “sub-optimal
path” is “good enough” we would limit the relative error.

More formally, let z∗ (¿ 0) be the (unknown) cost of the
optimal circular path and let z(A) the cost of the best path
P(A) found by a given approximate algorithm A. Of course
z(A)¿ z∗. We say that the relative error E(A) of path P(A)
is

E(A) =
z(A)− z∗

z∗
:

To de8ne a bound on the relative error it is enough to 8nd
a so-called “lower bound” of the unknown optimal solution,
i.e. a not necessarily feasible solution whose cost z′ is such
that z′6 z∗. If that solution is a feasible circular path, then
it is an optimal solution for the problem. By knowing z(A)
and z′ we have a “threshold value”:

B(A) =
z(A)− z′

z′
;

which bounds the relative error of path P(A), i.e.
E(A)6B(A).
To 8nd a solution which is a lower bound for the circular

path problem is enough to solve the shortest path problem
from any node of the 8rst column to any node of the last
column. That path may not be circular, and in this case it
cannot be taken as a solution; nevertheless, its cost z′ is a
lower bound for the optimal solution.

To 8nd such a path it is enough to apply the shortest
path algorithm for acyclic graphs by setting to zero the label
associated to every node [h; 1] of L1; h = 1; : : : ; u, and to
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explore all of their outgoing arcs. Once examined all the
nodes of all the layers, the shortest path can be found by
inspection of the last layer Lv: we select the node [s′; v] with
minimum label:

[s′; v] = argmin{di;v: i = 1; : : : ; u}:

Then z′=ds′ ; v. Moving back, through the predecessor func-
tion, from [s′; v] to the origin node in the 8rst layer, say
[r′; 1]. If the path from [r′; 1] to [s′; v] is a circular one, that
is, if |r′ − s′|6 1, then the relative path is the minimum
cost circular path; so, the optimal solution for our problem
has been found. Otherwise, z′ results to be a lower bound
of the optimal solution value.

To build an approximate circular path, we suggest 8rstly
to check among the shortest paths already generated and, if
necessary, to solve other shortest path problems to extract a
circular path whose cost results are of enough quality to be
selected as an approximate solution.

More in detail, as far as the shortest paths used to set
nodes s′ and r′ = f(s′; v), since the shortest path from r′

to s′ is not circular, we repeat for every other node [h; v]
the same check |f(h; v) − h|6 1, that is to check whether
a circular path has been created. If there exists at least one
circular path, we store the best one, which is not necessarily
the optimum one. Let us call P(A) that path and denote by
z(A) its cost. Now, we can evaluate the bound B(A) for the
relative error (that bound is ∞ if no circular paths exist).
If that bound 8ts with the pre-de8ned accuracy that we

require for a circular path to be chosen as an approximate
solution for our problem, we will use P(A). Otherwise, we
select a given starting node [ Oh; 1] and we re-compute the
shortest path tree from that node. At the end, we select the
minimum label node amongst [ Oh−1; v]; [ Oh; v] and [ Oh+1; v];
this gives the best circular path having [ Oh; 1] as starting
node. Again, if the path passes the required quality test, it
is chosen as P(A), otherwise another starting node [ Oh; 1] is
chosen and the process is repeated. In the case of t iterations,
the time complexity of the approximate algorithm is O(tuv).
The approximate algorithm can be viewed as a special

case of MSA orMBTAwhen the search for the CSP can stop
early. The pre-de8ned approximation accuracy may not be
always achieved even when all nodes in the last column are
checked in the approximate algorithm. This is particularly
true when the gap between the cost of the shortest path and
the cost of the CSP is large.

4. Experimental results

This section shows some of the results obtained using the
methods described in this paper. A variety of images have
been tested, including synthetic images and diDerent types
of real images.

4.1. Borehole data

To compare the diDerent shapes of shortest path obtained
using the ordinary and the CSP algorithms, ordinary dy-
namic programming algorithm is applied to the borehole im-
age shown in Fig. 1(a). The ordinary shortest path obtained
is shown in Fig. 7(a). The result of our CSP obtained by
using the combination algorithm is given in Fig. 7(c). No-
tice the position diDerence of the shortest paths close to the
left edges of Fig. 7(a) and (c). Fig. 7(b) and (d) show the
360◦ version of the Pat 2D images. It is clear that the path
obtained using the CSP method has the same starting and
ending position as shown in Fig. 7(d), while the path ob-
tained using the ordinary shortest path extraction technique
does not join up together at the starting and the ending po-
sitions as shown in Fig. 7(b).

4.2. Boundary detection

du Buf et al. described their 8rst results on diatom con-
tour extraction in Ref. [10]. In a pre-processing step initial
contours are extracted using a conventional edge-following
algorithm like Canny’s. The object contours are extracted
by using the best-8tting ellipse and a subsequent contour
following in the elliptical polar-transformed image. They
applied a depth-8rst search algorithm which evaluates the
grey level changes along the path in the polar-transformed
image.

Similar to du Buf et al.’s algorithm, we obtain some ini-
tial positional information about a closed contour. In our
case, however, we only need to know the approximate posi-
tion of the contour. Then the input image is transformed into
the polar coordinate system. Our CSP algorithm is applied
to this transformed image and a CSP circular shortest path
is extracted. The starting and ending positions of this ob-
tained contour are neighbouring points. If we transform this
obtained path from polar coordinate to the original Carte-
sian coordinate, a closed contour can be guaranteed. Fig. 8
shows two examples of 8nding the boundaries of an object.
Fig. 8(a) and (d) are the input images. Fig. 8(b) and (e) are
the circular shortest path obtained in the polar coordinates.
Fig. 8(c) and (f) shows the closed object contours.

4.3. Panoramic stereo matching

Correlation-based methods are very common for stereo
matching. Usually a correlation matrix is obtained for each
horizontal pair of scanlines from the left and the right stereo
images, and a shortest path is obtained in this correlation
matrix for disparity estimation. When performing panoramic
stereo image matching, it is necessary to take the constraint
that the left and the right columns of the stereo images are
actually neighbours into account. We can use one of our
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Fig. 7. (a) A borehole image with a crack; the white path is obtained using an ordinary shortest path extraction algorithm without circular
constraint. (b) Image in (a) shown in a cylindrical format. The starting and ending positions do not meet. (c) The white path is obtained
using the algorithm developed in this paper which has the constraint that the path is circular. (d) Image in (c) shown in a cylindrical format.
The starting and the ending points meet each other.

Fig. 8. Results of boundary extraction using CSP extraction. (a) An image with a circular contour; (b) transformed image from Cartesian
coordinate to polar coordinate. The white line shows the CSP extracted using the patching method (image was rotated by 90◦). (c) The
recovered image from the polar image. The white line is a closed contour. (d) Image of an Actinocyclus diatom (unicellular algae). (e)
Polar transformed image with CSP overlaid. (f) Image shown is the closed contour detected.
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Table 1
Running times of diDerent algorithms for CSP extraction

Running times (s)

Image size MSA IPA MBTA IP& Approx
(s) (s) (s) MBTA(s) (s)

256× 256 12.284 0.267 0.227 0.312 0.239
512× 512 389.440 1.948 0.989 2.143 0.962

Dynamic programming techniques are used as the ordinary short-
est path extraction method on a 85 MHz Sun SPARC machine.

CSP extraction algorithms to obtain a CSP in a correlation
matrix from panoramic stereo images. This obtained CSP
will ensure that the starting and the ending position of the
path are connected.

4.4. Running times

Table 1 shows the computation time of diDerent algo-
rithms for obtaining CSP on diDerent images. The computer
used was a rather slow 85 MHz Sun SPARC. All the algo-
rithms except the MSA are very fast and takes in the order
of 0:3 s. The timing was obtained by running the algorithms
on random images several hundreds of times and taking the
average.

5. Conclusions

We have developed several new algorithms for 8nding a
circular shortest path (CSP) in an image. These algorithms
have applications in borehole image analysis, object bound-
ary detection, and panoramic stereo matching. The CSP ob-
tained in the image ensures that the starting and ending po-
sitions are connected. The 8ve algorithms we developed are
the multiple search algorithm, the image patching algorithm,
the multiple back-tracking algorithm (MBTA), the image
patching and multiple back-tracking combined algorithm,
and the approximate algorithm. The image patching algo-
rithm is very fast although a solution is not guaranteed. The
MBTA is also very fast and it is guaranteed to 8nd a circular
path, but may not be the optimal one. The combination of
image patching algorithm and the MBTA achieves a much
higher probability and speed in 8nding the optimum CSP.
A typical running time for the image patching algorithm
on a 256 × 256 image is 0:267 s on a rather slow 85 MHz
Sun SPARC computer. The MBTA algorithm takes about
0:227 s. The combination of image patching algorithm and
MBTA takes about 0:312 s. The algorithm was shown to be
fast and reliable in tests on several diDerent types of real
images.
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