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Abstract 

An "expen assistant" system has been designed to recognise basic anatomical 
features in anterior-posterior X-ray views of the chest The long-term aim is to 
develop a model-based interpretation methodology which may be applied to other 
imaging modalities and anatomical regions. Key features of this methodology 
include a three-dimensional anatomical model, an inference engine, image-analysis 
and visualisation tools and an overlying control structure. The anatomical model is 
object-centred, incorporating shape and connectivity information, and is designed to 
accommodate normal and disease-related variations. The inference engine 
incorporates into its model previously located structures for the identification of 
funher structures. A preliminary version has been implemented using frame- and 
blackboard-based architecture. 

J Motiyation and Goals 

The Medical Image Understanding (MlU) project aims to provide "expen 
assistance" for radiologists in the context of high-throughput, digitally based 
Radiology Departments. This is achieved through model-based automatic analysis 
of images to provide "alerts" for abnormalities [I] and decision support for 
equivocal diagnoses [2]. An imponant design criterion for such a system is the 
ability to incorporate heterogeneous information sources, such as images formed 
from different imaging modalities and non-imaging sources. Simple image 
registration is not possible for many imaging modalities, for example, if a diagnosis 
is to be performed using images made by projection (such as X-rays) and sectioning 
(such as ultrasound). In this case both the image-formation physics and the image 
geometry make direct image comparison impossible. Another aim of this project is 
to explore image-understanding algorithms which may be applied to different 
anatomical regions. Many of these aims are achieved by basing image analysis on 
separable models of anatomical structure and image formation, and by performing 
data fusion in the domain of actual anatomy. 
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Many of the ideas inherent in the Medical Image Understanding concept are being 
incorporated in a demonstration project restricted to one anatomical region and. 
initially. to one imaging modality. Chest X-rays have been chosen for this initial 
study. because they represent a common diagnostic problem where expert assistance 
might improve diagnostic accuracy. and the projection imaging teChnique requires a 
complete anatomical model for image interpretation. 

Fig. I: Examples of the principal elements of the Medical Image Understanding 
chest X-ray analysis system. Left to right: original X-ray image; derived features of 
the image. in this case lung outlines; visualisation of a 5-parameter model of the 
skeleton fitted to the X-ray image; visualisation of a soft-tissue model including 
pleurae. diaphragm and mediastinum. 

2 Methodology 

The central feature of the MIU methodology is an object-centred. wee-dimensional. 
deformable description of human anatomy. since the anatomical model is thought 10 
be the paradigm for expert analysis of medical images. This description assists in 
(a) guiding image segmentation by predicting features based on current instance 
information [3] [41. (b) checking for abnormalities and (c) visual ising the resulting 
instantiated anatomy. The model is sufficiently explicit to permit precise prediction 
of features such as the edges of specific organs. The interaction between image and 
model is via a feature space: 

[ IMAGE SPACE 1+-+1 FEATURE SPACE ~[ ANATOMICAL SPACE 1 
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"Anatomical space" refers to a description of anatomy, both normal and abnormal, 
which may be varied to maximise the fit between model and image(s). Image space 
is the pixel space, which may include multiple image modalities. Feature space 
includes symbolic descriptions of image features (such as edges and textures) 
derived from model and image space. 

3. Preliminary Experimental System 

The proposed methodology is being tested in an experimental system developed on a 
Silicon Graphics Indig02 workstation using a frame-based blackboard architecture 
written in C and Lisp. This paper describes preliminary analysis of images digitised 
to 8 bits and up to lK by lK resolution from anterior-posterior chest X-rays. The 
goal of the preliminary system is to locate features using anatomical knowledge and 
then perform some simple tests to check for abnormalities. 

Object recognition is edge-based, with comparison between image and model being 
carried out in feature space, where an edge is represented by connected line 
segments. For simplicity the preliminary anatomical model also uses line segment 
models to describe edge shapes, though ultimately a full 3D model will be used to 
generate the feature-space elements. The expected direction and length of each 
segment in the model, as well as relational information such as connections and 
position relative to other edges, are stored in the frame system [5]. This relational 
information is described explicitly in the model, and is translated into constraints in 
the feature space. 

3,1. Control Architecture 

The control architecture uses a blackboard [6] to store the contents of the feature 
space. The blackboard consists of two types of frames: 
I. Model frames, each containing a line segment translated from an edge in the 
model into the feature space. Intrinsic and relational knowledge about the edge are 
translated into constraints on the position, length and orientation of the 
corresponding line segment. 
2. Instance frames , each containing pixel coordinates which are candidates to be 
matched to a given line segment, i.e. they are instances of the edges predicted by the 
model. 
The blackboard also contains the instances which are currently considered to be the 
best match to the model. Each instance frame has a confidence score based on how 
well it satisfies the constraints given by its model frame. 
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3.2. Major Landmarking 

To provide initial guidance to the segmentation, some major landmarks are 
identified first. The midline is found using a symmetry-detection algorithm [7]. 
The approximate boundaries of the body, lungs and ribs are then found using a 
variety of segmentation techniques, such as seeded region growing [8] and 
thresholding [9). 

Since the edges in the image are inter-related, new edges found with high enough 
confidence are used to update relational constraints on other frames. Backtracking 
is likely to introduce convergence problems and be computationally intensive, and 
so it is limited by grouping mutually dependent edges, such as connected edges, and 
permitting backtracking within, but not between, groups. 

To recognise a group of edges, the first step is to perform edge detection on the 
image to create a set of candidate edges (instance frames) for each model frame. 
Combinations of the candidates can be examined using backtracking to find the set 
which yields the highest confidence. There are two elements to the strategy for 
finding groups: 
I. Careful choice of the order in which the groups are found. Groups which are 
independent of others, and those for which the related groups have already been 
found, are generally processed first. 
2. When imposing constraints on a group via its relationship to another group, 
attention is paid to the confidence with which that other group was found. 
After matching the line-segment model to the image, actual pixel boundaries can be 
located by performing local edge detection near the line segments. 

Fig. 2: Initial landmarking and fitting of line-segment model. Left to right: original 
X-ray image; midline and initial rib and lung landmarking; line-segment model 
fitted to lung, diaphragmatic and mediastinal borders. 
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The above strategy is used for landmarking lungs, mediastinum and diaphragm. An 
important feature of chest radiographs is the depiction of ribs, and our project aims 
to identify each rib using an explicit anatomical model. This will be used for fixing 
parameters in the 3D anatomical model. Several techniques have been investigated 
for identifying ribs in these images. For identification of incorrect patient 
positioning it is necessary to match images of anterior and posterior rib segments. 
This is done by fitting curved segments to the intersections of the rib images with 
the lateral margins of the lungs, the continuity of the rib image providing the 
information which links the anterior and posterior rib segments. A full, 3D rib 
model now under development will permit more complete identification of skeletal 
structures, and information on patient positioning. This skeletal model, together with 
major soft-tissue landmarks, will assist in locating more subtle image features. 

3.3 Three·dimensional Model 

The requirements of the model are served through an object-centred anatomical 
deseription being developed in parallel with the image processing and control 
structures. Anatomical descriptions are incorporated into the frame structure used in 
the image analysis system described above. Information stored in the slots for each 
organ, or part of an organ, includes location in a prototype anatomy, shape 
descriptors, inherited parameters, imaging properties (e.g. X-ray density), 
connections to other organs and adjacency relationships. 

Slightly different descriptors are used for the skeletal system and soft organs, 
because of the different constraints imposed upon them. The parameters of the 
skeletal system are determined directly from the image, and are not subject to a 
space-filling constraint. However, soft-organ size and shape are partly determined 
by space-filling and adjacency constraints, i.e. all internal body spaces are filled, but 
no two organs can occupy the same volume. 

The skeletal system is modelled as a hierarchy of connected elements, starting at the 
C7 vertebra. Each element consists of a rib, rib segment or vertebra, whose location 
and orientation depends on the previous element. Such a hierarchical representation 
was achieved using three·dimensional parametric, L-systems, similar to the L-
systems description of plants [10]. Soft tissues are described in terms of non-
uniform, rational, B-spline surfaces (NURBS). The shape parameters may be 
altered within the constraints of anatomical connectedness (such as the lungs-
connections to the mediastinum via the hila), space filling, non-overlapping of 
organs and consistency with the image. 

The symbolic linkages inherent in the object·oriented structure of the anatomical 
model permit consistent variation of model parameters to fit images, or simulated 
effects of specific diseases, while its explicit 3D structure facilitates generation of 
feature-space information (such as the location of a given edge) which may be 
compared directly with corresponding fealures derived from image space. 
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4. CQucJJlsjoos and F.llllre Work 

Image-processing techniques have been successfully demonstrated for segmenting 
chest X-ray images, using mainly two-dimensional models for identifying lung 
outlines and ribs_ A frame- and blackboard-based control structure has been created 
for high-level control of the segmentation and linking to higher level descriptions_ 
A three-dimensional anatomical model has been constructed and is being linked to 
the image-processing modules via the frame structure, and this will provide 
guidance for the detailed segmentation of the X-ray images_ A logical extension of 
the project is to include both lateral and anterior-posterior views, which can be 
compared readily in anatomical space_ Because of the anatomical nature of the prior 
knowledge, the clinical emphasis of the project is on diseases producing structural 
rather than disseminated or focal change, and on diagnosis based on edge location 
and characteristics, rather than textural analysis_ 
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