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ABSTRACT: A comprehensive "expert assistant" system is being developed 
with initial application to chest X-rays. This system is characterised by the use 
of explicit anatomical models for reasoning about the anatomy, and for 
visualising the anatomical structures identified in the image segmentation. The 
overall strategy is to compare a modality-independent model with the image(s) 
by way of an intermediate feature space. The system is implemented to identify 
major structures on chest X-rays, ·mainly using long edges. An explicit three­
dimensional anatomical model forms a major system component, and the 
object-oriented structure of this model permits adaptation and anatomical 
reasoning. The system is implemented in a frame structure using LISP, and 
features automatic and interactive segmentation of major landmarks in chest X­
rays. 

1. OVERVIEW OF THE SYSTEM 

A role is emerging for "expert assistant" software for medical imaging 
workstations (13]. Image processing, high-level concepts and prior knowledge 
are essential components of such systems. Medical image processing systems 
are diverging from methodologies drawn from computer vision since many of 
the underlying asswnptions of computer vision are not applicable in medical 
imaging. For example, the segmentation of a scene as objects v. ground is 
rarely appropriate, especially in the case of projection modalities. Multiple 
views of the anatomy are frequently obtained by disparate imaging modalities 
where data fusion cannot be achieved by image registration. But at an expert 
human level they can be perceived as representations of the same underlying 
anatomy. It is the underlying thesis of this paper that anatomical reasoning is 
the basis of modality-independent knowledge, and that explicit anatomical 
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models are an essential component of a medical image Wlderstanding system, 
and therefore of an expert assistant system. 

Anatomical knowledge is commonly introduced into medical image 
segmentation by means of elastic matching to anatomical atlases (1]. When 
performed in two dimensions such systems commonly encoWtter difficulty with 
anatomical variations, particularly those in which three-, rather than two­
dimensional deformations are required for a complete description. For these 
reasons, this work has addressed the use of three-dimensional anatomical 
models in medical image interpretation. Such modelling as a strategy in image 
interpretation sets out to capture aspects of the human expert's reasoning, 
particularly those aspects which occur at the "expert" level, rather than at the 
level of simple object segmentation. It is believed that the reasoning process of 
clinicians takes place in "anatomical space", where concepts such as spatial 
relationships, cormectivities, ranges of normality define the metric. The 
hierarchical, systematised nature of anatomical knowledge is compatible with 
computer knowledge databases [12], while links to visualisations and 
interactivity are readily incorporated. Systematic concepts which may be 
incorporated into an anatomical model include tissue and organ types described 
through inheritance. For spatial reasoning, the model must be deformable in an 
anatomically consistent fashion, maintaining, for example, invariant cormections 
between organs. Thus it is not essential that the model represents a detailed 
normal atlas; however, the model must be deformable to actual anatomies. In 
practice, an initial state of the model close to average anatomy minimises the 
"distance" of the excursion in anatomical space from the initial point to an 
instantiated anatomy. 

For compactness, the model needs to be hierarchical and parameterised. One 
way of achieving this is through Lindenmayer systems ("L-systems") [7 ,8], an 
iterative description of complex structures previously applied to plants and 
described in detail in Section 3. Tills allows complex structures to be described 
using a small number of anatomically significant parameters. Shape 
descriptions need to incorporate a trade-off between the compactness of 
parametric descriptions and the explicitness of vertex descriptions. 

The ability to describe anatomical relationships in natural language [10] is 
achieved by an object-oriented structure. The principal invariance property is 
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connectedness, that is, the connections between organs must be maintained. A 
second property, defined as adjacency, refers to contact between organs which 
may allow them to slide over one another. The description needs to be 
embedded in a knowledge system where relationships more complex than 
spatial relationships may be explored, including functional relationships invoked 
in testing disease hypotheses. 
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Fig. I. The relationships between the pixel-based image space, "anatomical space" as defined 
by two and three dimensional models, and the intermediate feature space. 

While several systems exist for describing anatomy using object-oriented 
models (e.g. Schubert et al., [12]), linking such a system to medical images is a 
distinguishing feature of the present system (see also [10]). A prime 
requirement of the system is that the model itself is independent of imaging 
modality. This requires the intermediate stage of a modality-dependent feature 
space description which contains symbolic information about image-space 
features such as edge character and location, textures and multiple relationships 
among them (Fig. 1 ). Image segmentation proceeds on an iterative basis, with 
refinements to the segmentation being based on crude models, which 
progressively refine the 3-D model. 

The system has initially been implemented on posterior-anterior chest X-rays 
[2]. Titis clinical problem was chosen as an ideal application for an "expert 
assistant" because of the large throughput of chest X-rays in most radiology 
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practices [5]. The X-ray projection process superimposes contributions from 
the whole of the anatomy, requiring 3-D anatomical knowledge. While many 
lung diseases are diagnosed on the basis of texture changes within the lung 
fields, the approach in this project has been to restrict the scope to abnormalities 
more readily described as anatomical or structural variations. 11ris has 
effectively restricted the diagnoses to identifying abnormalities of long, smooth 
edges. 

2. IMPLEMENTATION 

The software has been implemented on a Silicon Graphics Iris Indigo 
workstation, using LISP for high-level control, and Iris Inventor for model 
visualisation. A user interface has been designed using the GL Library and 
resembles a standard P ACS user interface, so that interactivity can be 
investigated by clinicians unfamiliar with image processing interfaces. 
"Features" not available in conventional workstations, but made possible by the 
image-understanding capabilities, include anatomical visualisation, automatic 
and interactive image segmentation, a report on abnormalities of major 
structures and automatic measurement of lung field sizes and the cardio­
thoracic ratio. 

Extensive use is made of frame structures for knowledge management [9]. 
Features of the frame structure include the following: 
(1) Each frame is associated with a specific entity such as an organ, organ 
spatial relationship, image feature etc. 
(2) Slots, which contain specific pieces of information related to an instantiation 
of the frame such as spatial coordinates, names etc. 
(3) Procedures which modifY slots, create frames according to defined 
algorithms or translate model knowledge into constraints in blackboard frames. 

The frame structure is ideal for organising information in several domains in the 
current system, and specific applications include the following: 
(1) "Blackboard" architecture [9] which is implemented for the feature space 
description. 11ris is a network of frames with variable slots, in which, for 
example, edges may be identified from their binary relationships (e.g. "Edge A 
is to the left of edge B") with these relationships themselves occupying slots. 
The relationships are stored as fuzzy membership values of sets. 
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(2) The anatomical model itself stored in a frame-based structure. Slots include 
name of organ, pointers to parameters defining the organ shape, information 
about connectivities and adjacencies, X-ray attenuation and collision resolution 
procedure. Procedures include: 
(1) Modifying anatomy of a particular organ to match an image feature; 
(2) Modifying nearby organs to maintain adjacency and connectivity; 
(3) Generating feature-space information from the model, such as edge 

positions. 
Images are derived from conventional X-ray films digitised using a Lumisys 100 
digitiser which records images at up to 50 Jlm spatial resolution, 12 bit dynamic 
range. 

3. ANATOMICALMODEL 

Organ shape descriptions have received much attention in the literature [3,4,11]. 
The shape descriptions used for image matching have some strict requirements: 
(1) They should be ''natural" in order to express variations in anatomy, even at 
the level of basic topology. 
(2) They must be expressible in terms of a small number of parameters which 
can be varied to match the image to organ shape. Editing organ shape should 
be intuitive: for example, an extended organ (such as a blood vessel or a 
stomach) should be movable without affecting its diameter. 
(3) Deriving image parameters from the model must be computationally 
efficient, so that an iterative matching process can be invoked. For projection 
imaging, this requires rapid re-calculation of the edge locations; for cross­
sectional imaging, rapid calculation of arbitral)' sections is essential. 
( 4) A vertex representation of the anatomy must be derivable from 1he 
parametric description. Tills assists both in visualisation, and in invoking 1he 
adjacency, connectedness and collision procedures which maintain anatomical 
consistency. 

Most organs are defmed in terms of a natural medial axis, usually 1he 
embryological axis from which organ growth actually took place. The axis 
shape can be defmed parametrically as a spline curve, or iteratively through L­
systems [7 ,8]. At several points along the medial axis, cross-sections are 
defmed. These are parameterised using Fourier descriptors in polar coordinate 
space. The axial variation of the Fourier descriptors themselves may be 
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parameterised as, for example, polynomial curves, although this removes the 
local nature of individual parameters. 

Positions, relationships and shapes of organs are influenced by gravity, internal 
pressures, elasticity and growth patterns. Organ shapes may be influenced by 
adjacent organs. For example, the shape of the lung is determined almost 
exclusively by the size and positions of surrounding organs. The concept of 
organ "indentation", where organs adopt shapes determined by those of the 
surrounding organs is a well-established anatomical concept, as is 
"displacement", where organs are moved from their original position, retaining 
their shape. The space-filling property of anatomical structures implies that 
each part of an organ surface is shared between two organs, and after collision 
and space-filling constraints have been satisfied, the vertex representations of 
organ shapes is highly redundant (in theory by a factor of 2). This used when 
defming a rank order of organs such that organ i usually indents or displaces 
organ i+ 1. In the chest, this is achieved by the sequence: 

I ~gan type I ~ones I ~iaphragm I ~eart 
Lung shape descriptors are therefore not included, the lung surfaces being 
defmed by the mediastinum, diaphragm and costal pleurae. 

Organ shapes and connectivities may be described in a compact and parametric 
form using an L-systems description, as used by Lindenmayer for describing 
plant growth [7 ,8]. This is an iterative symbolic description in which elements 
such as generalised cylinders are progressively added to form a complex system, 
the accretion process mimicking physical growth. This approach has been found 
to be particularly useful in describing skeletal structures, as shown in Fig. 2. 

Organs with more complex shapes can be described by a combination of the L­
system representation, with cross-sectional boundaries represented by Fourier 
contour descriptors. Parametrically the x and y coordinates of each contour in 
the set can be represented as follows: 
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x = r(c,s)cos(9(c,s)) 

y = r(c,s)sin(9(c,s)) (Eq. 1) 

z=s 

Fig 2. Model of the skeletal structures in the chest, generated using an iterative 9-parameter 
L-systems approach. 

where r is the distance from the centroid and is a ftmction of two parameters: c 
for points on the contour plane, and s for points on the surface resulting from 
the ensemble of contours or slices. To achieve a more parametric representation 
of an individual contour r(c), the discrete Fourier descriptors are obtained as: 

1 M-1 

a~c=- "Lr(c)exp(-2jrtkm/ M) k=O,-··,M -1 (Eq. 2) 
M m=O 

where M is the number of vertices in the contour, and ak are the Fourier 
descriptors of the contour. M can be small, typically 4, for relatively simple 
objects such as the heart. The resulting volume can be represented by the 
matrix: 

[
ao,~ 

o- : 
- a~.N 

::: a~-u] 
aM- l,N 

(Eq. 3) 

where N is the number of slices. Further economy of parameters can be 
achieved if each individual column in 0 is modelled by a polynomial. A model 
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of the heart, derived from this model using a total of 12 parameters, is shown in 
Fig. 3. 

All parameters associated with the prototype anatomy (based on normal CT 
data) and the instantiated ariatomy are stored in a frame structure for 
incorporation into the feature-space reasoning described below. 

Apex 

Boundary 
contour 

Fig 3 (Left) Fourier-based shape description. The heart surface is described by a series of 
curves. with a specific orientation and scale relative to its predecessor. starting at the apex. 
(Right) Rendered 12-parameter model ofthe heart. 

4. FEATURE EXTRACTION AND FEATURE SPACE REASONING 

The architecture for reasoning about image data is shown in Fig. 1, i.e. a 2D 
model used for large-scale landmarking, and a 3D model used for finding more 
subtle structures such as hila and pulmonruy vessels. The features identified 
during the major landmarking are the edges forming the boundaries of the lung 
fields, i.e. mediastinum, diaphragm, apices and costal margins. In the 2D model 
these are represented by line segments to describe shape, and pairwise spatial 
relationships. Lengths and orientations of line segments and their relationships 
are described using fuzzy membership values into the "normal" set, which 
translate into confidence values of normality. The feature space currently 
contains only edges since complete or partial edges are a significant feature used 
by radiologists in interpreting projection-based images. 

Translating image-based information to feature space begins with midline 
determination based on a minimum-cost pa1h across the image, locating the 
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mediastinum. Pixel-based processing then produces a large number of 
candidate edges. The first stage is a Laplacian-of-Gaussian (LoG) operation, 
followed by a tracking operation on the zero-crossing LoG pixels which 
establishes the presence of "long" edges. Labelling these edges involves 
checking their locations and spatial relationships against their positions 
predicted by the 20 model. 

Reasoning in feature space is achieved by a blackboard architecture 
implemented as a network of frames where each edge (feature) predicted by 1he 
model has its own frame in the blackboard (Fig. 4 ). The blackboard frame 
stores knowledge about position, leng1h and orientation of edges derived from 
the model, as well as spatial relationships to other edges. These relationships 
form the links between frames in the network and, as an edge is identified, the 

·links indicate which other frames' edges are to be updated based on the new 
information. 
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Fig. 4 A network of frames comprising a "blackboard" for image segmentation. The solid 
arrows represent influence relationships. Dotted arrows represent the order of segmentation. 
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refers to the number of established relationships necessary for segmentation of a featw'e. 
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Outlines in X-rays are often partial or indistinct due to projection and 
superposition, so it is difficult to identify edges with certainty. The inference 
engine is able to entertain multiple edge-labelling hypotheses and that which 
seems most consistent can be selected using confidences based on fuzzy 
membership values, and then changed if necessary in the light of further 
infonnation. Since each constraint imposed by the model generates a 
confidence value, we can also be specific as to the nature of abnormalities and if 
the inference engine is not confident about a decision it has made, then it can 
report the exact reason for this lack of certainty. 

The final stage consists of active contour ("snake") refinement of the edges [ 6]. 
Edges resulting from the LoG operation are tortuous and affected by overlying 
structures such as ribs. The active contours refine the edge positions based on 
the energy function : 

Erota/ = Eintemal + Eimage + Emode/ (Eq. 4) 

Internal forces are heavily constrained for low curvature, and the edge features 
are selected so that "cusps" (e.g. the costo-phrenic junctions) lie at the junctions 
of the snakes. External forces are (1) image-based, which attract the snake to 
areas characterised by large gradients, and (2) model-based, influencing the 
contour position directly from the currently instantiated two- or three­
dimensional model. This is the most direct way of allowing a three-dimensional 
anatomical model to influence image segmentation. Alternatively, snake 
contours may be entered manually at the conclusion of the automatic 
segmentation. 

5. CURRENT SYSTEM AND FUTURE DEVELOPMENTS 

The current system relies more heavily on two-dimensional than three­
dimensional models. However, full 3-D anatomical descriptions have been 
incorporated into the frame structure, with generation of two-dimensional image 
space (synthetic X-rays) and feature space (symbolic descriptions) of the three­
dimensional anatomical instantiations, and realistic visualisations. A high-level 
two-dimensional feature space description has been incorporated, which 
currently provides: 
(a) Segmentation of right and left hemi-diaphragms, heart, costal margins, 

apices. 
(b) Report on nature (sharpness etc), location and size of the above features. 
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(c) Interactive refinement of selected edges using active contours. 
(d) Automatic measurement of dimensions such as cardio-thoracic ratio. 
In a preliminruy sample of 14 patients with abnormal lung anatomy, no feature 
was misidentified, even with major abnormalities (such as in Fig. 5). However, 
the system occasionally reported a failure to identify a structure, usually due to 
an edge being vel)' indistinct. 
The result of a segmentation is shown in Fig. 5. 

Fig 5. (Left) Refmement of the heart outline using an active contour. 
(Right) Result of an image segmentation. showing a nonnal right lung and left lung affected 
by consolidation and displaced boundaries. Apices, hemid.iaphragms, mediastinal and lateral 
boundaries are correctly identified. 

The three-dimensional model is being introduced progressively to the system; at 
present it guides the identification of heart boundaries, by optimising the model 
shown in Fig. 3, and subsequently contributing to the model-based energy terms 
inEq. 4. 

Thus the system has been successful in coarse-scale image segmentation in 
chest X-rays in the presence of abnormalities and has already been received well 
by radiologists. More complete implementation, with full incorporation of a 3-
D model, will allow the system to realise its full capabilities. Further 
enhancement will include other views (notably lateral X-rays) and other 
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modalities, which will take full advantage of high-level, three-dimensional 
anatomical knowledge incorporated into an expert assistant workstation. 
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