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Abstract—An approach is suggested for automating fish iden-
tification and measurement using stereo Baited Remote Under-
water Video footage. Simple methods for identifying fish are not
sufficient for measurement, since the snout and tail points must be
found, and the stereo data should be incorporated to find a true
measurement. We present a modular framework that ties together
various approaches in order to develop a generalised system for
automated fish detection. A method is also suggested for using
machine learning to improve identification. Experimental results
indicate the suitability of our approach.

I. INTRODUCTION

When studying fish populations, either for marine research
or industrial fishery purposes, it is crucial to obtain accurate
information on size and shape of fish populations [1]. Tra-
ditionally, this has been carried out using methods including
extracting fish from the ocean by casting nets, and human
underwater observation [2]. This poses several issues since
these methods are intrusive upon the ecosystem: casting nets
kills fish and interferes with unrelated wildlife, and human
observation disturbs the marine life. To this end, various
systems using underwater cameras have been suggested and
implemented in recent years, including using a method called
Baited Remote Underwater Video Systems (BRUVS) [3], [4].
However, current systems require manual analysis by trained
experts which requires considerable time and effort. Spamp-
inato et al. [2] suggest it could take as much as 15 minutes
for a marine biologist to work through a minute of footage,
classifying and annotating. Automating this process is clearly
of critical importance to the success of these systems.

II. BACKGROUND

Many different approaches have been taken to automating
fish identification in stereo video, although many authors
use different circumstances to develop their work on. Sev-
eral authors, for instance, restrict their studies to constrained
environments, e.g. fish tanks [5]. Han et al. used a simple
background subtraction method to extract and measure fish
from simple low-quality stereo images [6]. Some researchers
have developed sophisticated methods based on simple, staged
photographs of single fish [7]. These methods are not imme-
diately practical for natural environments like those seen in
BRUVS footage, which has many different (potentially unseen)
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fish that move and cluster. However, they offer some useful
techniques.

Other works have focused on developing successful meth-
ods which compensate for changing fish shapes caused by
fish deformation while swimming, using point distribution
models [8] or deformable template matching [9]. These results
are more practical, since fish in natural environments can be
seen from any angle and deform in many ways.

More recent research has also explored machine learning
techniques such as Support Vector Machines and decision
trees [10]. The basic problem of incorporating machine learn-
ing techniques for this task is deciding upon features to use
that can be learned. Larsen et al. were able to find a set of
features that provided a 76% resubstitution rate using linear
discriminant analysis [11]. Shortis et al. [12] suggest using a
Nearest Neighbour Classifier to validate the candidate regions
as ‘fish’ or ‘not fish of interest’.

In this paper, we propose a new method for structuring such
systems to incorporate improvable ‘modules’ and a supervised
learning approach.

III. METHOD

A. Modules

The problem of counting and measuring fish can be broken
into three major steps: Identification, Tracking and Measur-
ing. We can define an implementation of this framework by
defining a particular set of interfaces. Once these interfaces
are defined, the implementations of each step can be changed,
switched out and redefined without affecting the others. This
breakdown was based on Shortis et al.’s proposed approach
to fish recognition [12], although we vary some of their
suggestions.

Identification of fish in any given frame is the natural first
step of the process, since nothing can be done unless fish are
identified. We took this identification as acting within a single
frame, figuring out which objects in the image are of interest.
This step, by itself, is inadequate to analyse BRUVS footage,
as individual frames fail to capture all required information.

Tracking of fish across N frames is necessary in order
to obtain an accurate count, as it prevents the system from
double counting individuals. It can also be used to refine the
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Fig. 1. Raw frames of a BRUVS stereo pair.

identifications made on individual frames. For small N, simple
characteristics can be taken into account to invalidate noise,
under the assumption that fish are consistently visible. By
taking this into consideration, it also becomes possible to find
fish that are no longer visible (for instance, hidden behind
another). As N grows, techniques like trajectory analysis can
be used to validate identification further [13].

Measuring is applied to matching stereo frames to find the
size of fish that have been identified and tracked. Typically,
snout to tail (or fork) measurements are used to define the
length of a fish [12], although alternative systems have to be
employed when these two points are not available [14]. Stereo
video techniques need to be applied to obtain an accurate
measurement between the two points. We use sparse disparity
techniques as they lent themselves well to our implementation.

These three modules are the main parts of our suggested
framework, but we also added two steps which are only
required due to insufficient data being available. Having access
to the image background allows the use of many identification
and tracking methods made popular in pedestrian tracking
research [15] which depend on background subtraction. When
a background image is not available, background extraction can
be used to generate a background using a sequence of video.
This background can then be improved as dynamic parts of
the image are identified and tracked. The other added step
is the generation of a training set of fish images, required for
supervised learning methods. We present a suggested approach
for generating this set during the operation of the system, in a
semi-supervised manner. These two modules are not required
if the associated data are available.

B. Implementation

A crucial aspect of implementation, in order to make the
system modular, is defining a common interface for the three
steps. As long as each individual module uses a well-defined
interface, the processing techniques implemented can be inde-
pendently changed. The system was implemented in C++ using
the Open Source Computer Vision Library (OpenCV) [16],
using BRUVS stereo video footage of a naturally noisy un-
derwater environment. An example stereo pair can be seen in
Figure 1.

1) Background extraction: We wanted to use background
subtraction techniques to identify dynamic foreground objects

in the footage, but did not have access to a single frame with
no fish in view. In order to get around this, we extracted
the background from the video footage we had. In order
to generate a sharp, clear background image (unlike those
produced by frame-averaging techniques), we set each pixel to
its most likely value for each colour channel by generating a
histogram for the pixel channels across a uniformly distributed
subset of frames. The results can be seen in Figure 2.

Fig. 2. The extracted background using 1 minute of footage from the left
camera.

2) Identification: With a focus on running time, fairly sim-
ple methods were chosen to identify fish in the video footage.
We perform a simple absolute background subtraction on each
frame to isolate dynamic (foreground) elements. Then, we
apply a median filter to the image to reduce noise and flatten
similar sections into a contour-like map of the image. The
result can be seen in Figure 3. A threshold value is generated
by analysing the shape of the resulting histogram, and this
value allows a thresholding that generates a binary image with
dynamic objects represented by white shapes. This approach
allows very simple contour extraction, by simply taking the
boundary of the extracted foreground region. These contours
are then used to describe the shape of the identified fish in
later processes; However, this approach makes no distinction
between fish that overlap, which may cause deformation of
the contour. This common situation is instead handled in later
sections.

3) Tracking: Tracking fish across frames allows the system
to distinguish between fish and noise, which is typically static,
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Fig. 3. Frame prior to thresholding. Light shades indicate foreground. The image histogram is overlaid in green.

and may ‘flicker’ between frames. It can also be used as a
way to provide information that cannot be found by looking
at individual static images. We demonstrate a number of
techniques in this module that are used to analyse the footage.

Most importantly, the tracking process involves ‘tagging’
identified fish by comparing them to previously seen individ-
uals. This can be calculated by comparing all newly identified
fish with those seen in the previous frame. First we compare by
location, since fish have a limited speed and a single individual
is unlikely to move by more than its length across two frames.
For any conflicts that arise by fish being physically close,
fish can be matched by comparing physical characteristics
including size, direction of motion and mean pixel intensities.
When each fish has been tagged with a unique identifier, the
system can keep track of each fish, including when they leave
the frame. These identifiers are maintained across all frames,
allowing a fish count to be estimated by simply counting the
number of identifiers allocated.

Once this basic tracking step has been done, further infor-
mation can be drawn from the N previous frames in order to
improve fish detection rate. In particular, this approach was tar-
geted at counteracting the effects of overlapping or obstructed
fish. If any tracked and tagged fish (the obstructed) is not found
in the latest frame and another fish (the obstructor) occupies
the location where the obstructed was last seen, we assume
the fish identification has merged the two, or the obstructed
fish is completely within the contour of the obstructor. This
causes two problems with tracking - the obstructed fish is lost
from the frame (and hence is lost from the tracker), and the
contour of the obstructor becomes deformed by the addition
of the obstructed.

We detect the obstruction of fish by comparing the lo-
cations of any fish lost from the tracking with the locations
of fish which were identified in the current frame. Once the

obstruction has been detected, we add the lost fish to the set of
fish seen in the frame, maintaining the last-seen contour and
velocity. This process is repeated for each frame in which the
fish remains lost. When new fish are identified in frame, we
compare their physical properties to the fish that was lost, if
they have been identified close to the outline of the obstructed.
Using this technique, the obstructed fish is picked up after it
re-emerges from the obstructor. An example of this process
can be seen in Figure 4, which shows a pair of fish after
obstruction, immediately prior to re-emergence, and following
reidentification.

Fig. 5. Merged fish outline, before and after tagging and contour adjustment.

To fix the contour deformation, we compare the new
contour of the obstructor with the old contour of the obstructed.
Any contour points of the obstructor that fall within the last-
known contour of the obstructed are discarded. Meanwhile, the
contour of the obstructed fish is maintained as its last known
contour, as we assume (lacking evidence to the contrary) that
the fish does not deform while we cannot see it. This provides
a reasonable estimate for the correct outline of both fish, given
a prior contour existed for each. Figure 5 shows a pair of fish
which have been identified as merged. The purple contour is
clearly not a correct fish outline, and the best-fitting ellipse
(used to estimate fish size and angle) is poorly fitted. After
the tracking process has been applied, the last-known contour
has been applied to the obstructed (fish 7) and shows some

Fig. 4. Fish before obstruction, immediately before clearing, and after clearing the obstruction.
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Fig. 6. Example of matched fish. Left frame is on top, right frame is on bottom.

displacement from the actual outline. The contour for the
obstructor (fish 6) has been adjusted to remove the merge,
leaving only a slight ridge and an ellipse that is a far better
estimate for fish size.

4) Measurement: The implementation of this module de-
pends on the data available, but involves three main parts:
Calculating disparity between left and right fish, finding the
snout and tail points, and performing the calculations (the
last step being covered in other works [17], we will avoid
discussing it here).

There are a number of ways to calculate disparity between
left and right images, either with a dense approach (using all
points to create a depth map) or a sparse one (using only points
of interest) [18], [19], [20]. This process can be simplified
by rectifying the images using the intrinsic and extrinsic
camera parameters [21], or using fundamental matrices [22].
We applied rectification to the images before applying any
other processes. We used sparse disparity to calculate real-
world coordinates. This required identifying points in the left
image that correspond with points in the right. We approached
this by comparing the known locations of tracked fish in the
left and right frames. This was feasible due to the principles of
epipolar geometry – since the images were rectified, matching
fish had to be on the same horizontal line [23], [21]. Despite
this, there were typically a large set of potential matches,
including fish that could only be seen in one image.

In order to sort through the potential stereo matches, we
analyse the colour intensities of the image. We generate and
compare the histograms for the hue and saturation channel for
each pixel within the contours of the fish. This provides a
reasonable mapping from left to right fish, and the result can
be seen in Figure 6.

Once we know which fish correspond we know that, by
extension, the snouts and tails correspond as well. Rather than
finding the true snout and tail points, we define an ellipse of

best fit around the contour of the fish. We can then estimate
the snout and tail points as the major axis endpoints of this
ellipse. We then refine these approximations by finding nearby
contour points which match the corresponding fish’s contour
by sitting on the same epipolar line. This was found to provide
a reasonable approximation to the snout and tail points, as can
be seen in Figure 7.

Fig. 7. A fish with estimated snout and tail points marked.

C. Learning

Learning algorithms, if properly trained, can be used to
classify candidate regions as fish or ‘not-fish’ [12]. They can
also be used as multi-class classifier, either attempting to label
the fish type [10] or identifying a candidate as a correct fish,
partially correct fish, or noise.

To use supervised learning algorithms, a set of labelled
training data is required. Existing libraries of fish images are
not necessarily sufficient for this, due to the specific effects
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of lighting, background, depth and water colour. Instead, we
generated training data by storing non-validated candidate
regions identified during a typical run of the system. Then, we
labelled these images according to the desired learning classes
and grouped them with a set of numerical feature descriptors
developed for use as inputs to learning algorithms.

In order to achieve this, we needed to define a set of
features with which we can classify fish. If the wrong features
are selected, a classifier will never converge to a successful
classification, so this is often a major step for machine learning
research [10]. The features we use are based on colour and
shape of individual fish, rather than involving the relationships
between fish. To describe the colour of the fish, we use the
mean and variance for the RGB colour channels of the pixels
within the fish contour. For the shape features, we use the
contour area and the average convexity defect. The convex-
ity defect for each section of the contour is the maximum
deflection from the convex hull, where the section is defined
by all contour points bounded by consecutive points in the
hull. We also use Hu’s 7 invariant moments [24] as numerical
shape descriptors. These features are trivial to compute from
the fish images, and can be used to improve the accuracy of
the fish identification by discarding candidate regions that are
not classified as fish.

IV. EXPERIMENTAL RESULTS

A. Raw System

In Figure 8, an example of annotated final output can be
seen, with identified contours, assigned IDs and measurements
overlaying the original images. However, this frame shows
a reduced view of the frame, with the noisy part of image
(including the seafloor) excluded to simplify development.
When the noise is included, the simple methods used for
identification achieved a raw accuracy of 43% (56.57% of
candidates were ‘junk’).

Since a focus of automating this identification is to improve
time costs, the timing of the system is analysed also. An
output from running 100 frames, one-by-one, is provided in
Figure 9, and shows that the major time costs are incurred at
the identification stage (background subtraction and contour
extraction).

Average time required per section:
Rectification: 0.1572 s
BG Subtraction: 0.2176 s
Contour Extraction: 0.1717 s
Tracking: 0.1619 s
Matching: 0.0269 s
Measuring: 0.0344 s
Drawing: 0.0217 s

Time per frame: 0.7914 s
Time per second of footage: 19.785 s

Fig. 9. Timing output.

B. Learners

To test the attributes selected for learning, the WEKA
machine-learning toolkit [25] was used with manually labelled
candidate fish. The training data was tested under multiple
conditions. We trained binary classifiers using the dataset, first
with a subset of attributes and then with all fifteen. We also
trained classifiers that labelled fish as ‘fish’, ‘junk’, or ‘fish
with incorrect contour’, on both the subset and full set of
features. Finally, we tested the learners on a second set of
labelled data, from BRUVS footage which identified far more
noise than correct candidates.

The datasets were tested using variants of multilayer per-
ceptrons (MLPs) and decision trees using a single layer and
multiple layers. The ZeroR algorithm (which predicts the mode

Fig. 8. Example of annotated final output.
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of a discrete class as the class for all instances) was used as
a baseline against which to compare the others to. Table I
shows the results from these learners. The numbers indicate
the percentage of correctly classified candidates, and results
that were significantly better than the baseline are marked with
an asterisk. It can be seen that when all attributes are used,
all tested learning algorithms are able to improve on the raw
performance of the identifier, from less than 60% to over 80%
in the case of binary classification. This indicates that any
of these learning algorithms could be successfully integrated
into a counting and measurement system using the numeric
attributes described.

Conversely, the results also show that none of the learners
improved on ZeroR when the raw system had a high failure
rate. This indicates that learning with this method cannot
replace a well-developed identification algorithm, merely aug-
ment an imperfect one.

TABLE I. WEKA TESTING OUTPUT. ‘*’ REPRESENTS A

STATISTICALLY SIGNIFICANT IMPROVEMENT ON ZEROR. ‘ZEROR’ IS A

ZERO-RULE CLASSIFIER. ‘STUMP’ IS THE DECISIONSTUMP ALGORITHM

(A 1-LAYER DECISION TREE). ‘J48 TREE’ IS A DECISION TREE USING THE

J48 ALGORITHM. ‘0L MLP’ IS A SINGLE-LAYER PERCEPTRON

ALGORITHM. ‘MLP’ IS A MULTI-LAYER PERCEPTRON ALGORITHM.

Dataset ZeroR Stump J48 Tree 0L MLP MLP
Set 1 Binary Attribs- 58.57 64.57* 72.29* 62.36* 63.07
Set 1 Binary Attribs+ 56.57 84.56* 83.90* 84.12* 82.47*
Set 1 Tertiary Attribs- 39.29 42.50 62.50* 63.50* 68.07*
Set 1 Tertiary Attribs+ 56.57 66.86* 70.81* 74.65* 74.16*
Set 2 85.67 84.67 82.00 82.00 80.93

V. CONCLUSIONS AND FUTURE WORK

A framework was suggested for a generalised automated
fish counting and measurement system, along with a partic-
ular approach for implementing each part of this framework.
Also, a feature set for machine learning was presented which
can improve performance of a simple implementation of the
identification portion of the framework significantly.

Further work on the implementation of the framework
could incorporate techniques such as Gaussian Mixture Mod-
els [26] or Optical Flow [27] to improve identification and
noise handling. The machine learning algorithms conceptually
proven using WEKA should also be incorporated into the
implementation. It should be feasible to provide a training
set during the operation of the system rather than prior to it,
by using a scoring learner which outputs a confidence value
representing the probability that the candidate is a fish. This
learner can then request human input if the confidence is not
high enough, providing a system which learns to not need
human intervention, but can automatically adapt to different
environments, lighting conditions, and fish species.
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