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Abstract

This paper presents a fast and reliable stereo matching al-
gorithm which produces a dense disparity map by using fast
cross-correlation, rectangular subregioning and maximum-
surface techniques in a coarse-to-fine scheme. Fast correla-
tion is achieved by using the box filtering technique whose
speed is invariant to the size of the correlation window, and
by segmenting the images at different levels of the pyramid
into rectangular subimages. By working with rectangular
subimages, the speed of the algorithm can be increased and
the intermediate memory storage requirement is reduced.
The disparity for the whole image is found in the correla-
tion coefficient volume by obtaining the maximum-surface
rather than simply choosing the position that gives the max-
imum correlation coefficient value. Typical running time for
a 512�512 image is in the order of half a minute rather
than minutes or hours. A variety of synthetic and real im-
ages have been tested, and good results have been obtained.

1. Introduction

The correspondence problem in stereo vision and pho-
togrammetry concerns the matching of points or other kinds
of primitives such as edges and regions in two images such
that the matched points are the projections of the same point
in the scene. The disparity map obtained from the matching
stage may then be used to compute the 3D positions of the
scene points given knowledge about the relative orientation
of the two cameras.

Intille and Bobick [8] presented a stereo algorithm that
incorporates the detection of the occlusion regions directly
into the matching process. They developed a dynamic
programming solution that obeys the occlusion and order-
ing constraints to find a best path through the disparity-
space image. Fua [6] described a correlation based multi-
resolution algorithm which was followed by interpolation.

Anandan [2] described a hierarchical computational frame-
work for the determination of dense motion fields using
correlation-based method from a pair of images. A num-
ber of researchers have also used dynamic programming to
solve globally the matching problem [7, 10].

Sun [13, 14] developed a fast stereo matching method
using fast cross correlation and dynamic programming tech-
niques. The dynamic programming was applied to the cor-
relation coefficients matrix along the corresponding epipo-
lar lines. He did not consider the continuity of neighbouring
epipolar lines. Roy and Cox [12] developed an algorithm
for solving theN -camera stereo correspondence problem
by transforming it into a maximum-flow problem. The
minimum-cut associated to the maximum-flow yielded a
disparity surface for the whole image at once. Thepreflow-
push lift-to-frontalgorithm was used when they calculated
the maximum-flow. The average running time for Roy and
Cox’s algorithm wasO((MN)1:2N1:3) (with image sizeM;N and depth resolutionD) [12]. Chen and Medioni [4]
presented a propagation type of algorithm similar to [10].
The techniques they used included non-maxima suppres-
sion, seed voxel selection and surface tracing. There was
no mention of the speed issues in [4].

In this paper we address some of the efficient and reliable
aspects of the stereo matching algorithms by using fast cor-
relation, rectangular subregioning and maximum-surface
techniques in a multi-resolution scheme. The disparity is
obtained from the 3D correlation coefficient volume using
a two-stage dynamic programming technique considering
the continuity of the neighbouring epipolar scan lines. The
combination of these techniques results in very fast and re-
liable stereo matching. The rest of the paper is organised as
follows: Section 2 describes the method for fast calculation
of similarity measure. Section 3 presents our new method of
stereo matching by finding the maximum surface in the 3D
correlation volume by using dynamic programming tech-
niques. The detailed matching strategy is described in Sec-
tion 4. Section 5 shows the experimental results obtained
using our fast stereo matching method applied to a variety of
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images. Section 6 discusses the reliability and computation
speed issues of our algorithm. Section 7 gives concluding
remarks.

2. Fast Calculation of Similarity Measure

Similarity is the guiding principle for solving the corre-
spondence problem. Corresponding features or areas should
be similar in the two images. Different similarity measures
have been used in the literature for matching, and their per-
formance and computation cost vary [11, 3]. The most
commonly used similarity measure is the cross-correlation
coefficient. We will use the zero-mean normalised cross-
correlation (ZNCC) coefficient as the measure of similar-
ity between the source and the candidate matching areas.
The estimate is independent of differences in brightness and
contrast due to the normalisation with respect to mean and
standard deviation. But direct calculation of ZNCC is com-
putationally expensive compared with the sum of absolute
difference or the sum of squared difference. Faugeraset
al [5] developed a recursive technique to calculate the cor-
relation coefficients which are invariant to the correlation
window size. Sun [13, 14] used box-filtering technique for
fast cross correlation. The following subsections describe
our early work in [13, 14] for achieving fast correlation.2.1. Fast Cross-Correlation

Let fm;n be the intensity value of anM � N imagef
at position(m;n), wheref is to be locally averaged into�f , i.e. obtaining the mean of the original image within a
box. We also have similar definition for a second imageg. The zero-mean normalised cross-correlation of two local
windows can be written as follows:C(i; j; d) = covij;d(f; g)varij(f)� varij;d(g) (1)

wherecovij;d(f; g) = i+KXm=i�K j+LXn=j�L(fm;n� �fi;j)(gm+d;n��gi+d;j)
(2)

and i; j are the image row and column indices.d is the
shift of the window along epipolar lines, which indicates
the possible disparity values;K andL define the correla-
tion window size. �f and�g are the mean values within the
windows. varij(f) andvarij;d(g) are the square roots of
the variances for the left and right local windows. Using
the algorithms described in [13, 14], the cross correlation
coefficients can be obtained efficiently.

The result of the correlation calculation described above
is a 3D volume containing the correlation coefficients as

shown in Fig. 1. The size of the volume depends upon the
image row and column numbersM;N and the maximum
disparity search rangeD. The complexity of the algorithm
isO(MND). The storage space needed for the correlation
coefficients is in the order of4MND bytes.
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Figure 1. An illustration of the 3D correlation
coefficient volume obtained after using the
fast correlation method.2.2. Using Subimages
Rather than working with the whole image during the

fast image correlation stage as described in the previous
subsections, we could work with subimages to speed up
the correlation calculation further and reduce the memory
space for storing the correlation coefficients. As mentioned
earlier, the computation complexity for the fast image cor-
relation step isMND if we work with the whole image.

If the image is divided inton subimages or rect-
angular subregions, the computation complexity will bePn�1i=0 (MiNiDi), whereMi, Ni are the row and column
numbers for theith subimage or region, andDi is the dis-
parity search range over this subimage. It is anticipated thatPn�1i=0 (MiNiDi) will be smaller thanMND, especially
when the disparity changes a lot within the whole image.
When actually performing correlation calculation for each
of the subregions, certain size of region overlapping needs
to be considered in order to eliminate the boundary effect.
It is also necessary to allow some overlapping between suc-
cessive horizontal stripes. The amount of overlapping de-
pends on the size of the correlation window used. When
calculating the corresponding positions of a subregion in the
right image after knowing the position in the left image, the
disparity information of this region in the disparity map will
be used. For detailed description see our early work [14].

There is another advantage for working with subimages
in terms of memory usage. As mentioned in the previous
subsections, some memory space is needed to store the cor-
relation coefficients. In the case of working with one whole
image, the memory space needed is in the order of4MND
bytes. While in the case of working with subimages, the
memory space needed is in the order ofmaxi(4MiNiDi),
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because the memory for each subregion is dynamically al-
located and freed.

3. Maximum-Surface in the Volume

Sun [13] and Intille and Bobick [8] chose a slice of the
correlation coefficient volume as a 2D correlation matrix
for each scan line of the input image and use this matrix to
obtain disparities. As mentioned earlier in the Introduction
section, Roy and Cox [12] and Chen and Medioni [4] used
3D volume information to find disparities.

In this section, we will approach the issue of obtaining
disparity map from 3D correlation coefficient volume using
dynamic programming techniques, which is computation-
ally efficient. A maximum surface which cuts through the
3D volume from the top to the bottom as shown in Fig. 2
is obtained using a two-stage dynamic programming tech-
nique. The maximum-surface gives the maximum sum of
the correlation coefficients along the surface when certain
constraints are imposed. The disparity gradient limit con-
straint can be easily implemented during the dynamic pro-
gramming process. This limit constrains the size of neigh-
bourhood search or the surface along which it can go.

N (j)

M
(i)

D (d
)

Figure 2. The maximum surface which give
the maximum accumulation of values in the
cross correlation coefficient volume.

Now we describe our novel algorithm for the maximum-
surface extraction in a 3D volume of sizeMND. AssumeC(i; j; d) is the correlation coefficient value in the 3D vol-
ume at position(i; j; d), where0 6 i < M; 0 6 j < N ,
and0 6 d < D. ArrayY (i; j; d) contains the accumulated
values of the maximum cross correlation coefficients along
all the possible surfaces in the same volume from top to bot-
tom. For the top horizontal slice of the volume, i.e. wheni = 0, Y (0; j; d) = C(0; j; d) (3)

i.e. the top (horizontal) slice ofY is a copy of the top slice
of C. For the remaining horizontal slices of the volume, theY values at each position is obtained using the following
recursion:Y (i; j; d) = C(i; j; d) + maxt:jtj6pY (i� 1; j; d+ t) (4)

wherep determines the number of local values that need to
be checked. Ifp = 1, only three values inY need to be
evaluated. The three values areY (i � 1; j; d � 1); Y (i �1; j; d) andY (i� 1; j; d+ 1).

After the recursion described in the previous paragraph,Y (i; j; d) contains the maximum sum ofC(i; j; d) from top
to bottom of the 3D volume. We now use volumeY to ob-
tain the disparity map for the input stereo images. Starting
from the bottom of the 3D volumeY , we select the 2D hor-
izontal slice withi = M -1. From this 2D matrix of sizeND, a shortest-path from left to right is obtained using dy-
namic programming techniques, as illustrated by the dotted
line inside the shaded region in Fig. 3. The summation of
the values along this path gives the maximum value. This
obtained path is related to the disparities for the last or bot-
tom row of the input image. The distance of each point
along this path to the middle dashed line in Fig. 3 is the ob-
tained disparity for the same x- positioned point of the input
image.

When calculating the disparity for row numberi-1, we
use the result obtained for row numberi. We now select the
horizontal slice numberi-1 of the 3D volumeY , and mask
out those values outside the grey region which arep position
away from the shortest-path obtained from row numberi, as
shown in Fig. 3. Then a new shortest-path (the black curve)
is obtained in this 2D matrix from left to right which are
constrained to lie inside this grey region. This process of
obtaining shortest-path is repeated until the disparity for the
first row of the image is obtained.

+w

-w

0

Figure 3. An illustration of the shortest-path
obtained for each horizontal slice of theY (i; j; d) volume.

Putting the shortest-paths for each of the scan line to-
gether form a 3D surface within the 3D volume ofY . Be-
cause successive shortest-path for each scan line is obtained
in the neighbourhood of the previous path position, the 3D
surface gives more consistent disparities.

4. Matching Strategy4.1. Coarse-to-�ne Scheme
It has been shown that a multi-resolution or pyramid

data structure approach to stereo matching is faster than
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one without multi-resolution [9], as the search range in
each level is small. Besides fast computation, a more reli-
able disparity map can be obtained by exploiting the multi-
resolution data structure. The upper levels of the pyramids
are ideal to get an overview of the image scene. The details
can be found down the pyramid at higher resolution. There
are three useful properties for the coarse-to-fine scheme [1]:
(a) the pull-in range or search range can be increased, be-
cause at a coarse pyramidal level only rough initial values
are needed; (b) the convergence speed can be improved;
and (c) the reliability of finding correct matches can be in-
creased.4.2. Sub-pixel Accuracy

Sub-pixel accuracy can be obtained by fitting a second
degree curve to the correlation coefficients in the neighbour-
hood of the disparity and the extrema of the curve can be ob-
tained analytically. The general form of the second degree
curve (parabola) is:f(x) = a+b �x+c �x2. The maximum
can be found where the slope is zero in the quadratic equa-
tion. The sub-pixel position can be found atx = �b=2c. If
only three points of the correlation values are used, e.g. the
points ati�1; i; i+1, the sub-pixel position of the disparity
can be calculated using the following formula [2]:x = i+ 12 � C(i� 1)� C(i+ 1)C(i� 1)� 2C(i) + C(i+ 1) (5)

whereC(i) is the correlation value in the matrix at positioni, andx is the sub-pixel disparity obtained. If five points
of the correlation values are used, e.g. the five points ati� 2; i� 1; i; i+1; i+2, we derive the following equation
for the calculation of sub-pixel position:x = i+ 720� 2C(i � 2) + C(i� 1)� C(i+ 1)� 2C(i + 2)2C(i � 2)� C(i� 1)� 2C(i)� C(i + 1) + 2C(i+ 2)

(6)4.3. Algorithm Steps
Our proposed algorithm for stereo matching is:

1. Build image pyramids withK levels (from 0 toK �1);
2. Initialise the disparity map as zero for levelk = K�1

and start stereo matching at this level;
3. Perform image matching using the method described

in Sections 2-4 which includes:

(a) Segment images into rectangular subregions;
(b) Perform fast zero-mean normalised correlation

to obtain the correlation coefficients for each
subregions and build a 3D correlation coeffi-
cient volume for the whole image;

(c) Use the two-stage dynamic programming tech-
nique to find the maximum surface, which will
then give the disparity map as described in Sec-
tion 3.

4. If k 6= 0, propagate the disparity map to the next level
in the pyramid using bilinear interpolation, setk =k � 1 and then go back to Step 3; otherwise go to
Step 5;

5. Fit curve to obtain sub-pixel accuracy using Eq. (5)
or Eq. (6) if necessary.

6. Display disparity map.

5. Experiment Results

This section shows some of the results obtained using
our new method described in this paper. A variety of images
have been tested, including synthetic images and different
types of real images. The input left and right images are
assumed to be rectified epipolar images.
Synthetic Images

Fig. 4 gives the result of the algorithm running on two
pairs of synthetic images. The two columns on the left show
the input left and right images. The third column is the
results obtained using our earlier method presented in [13,
14]. The last column shows the results using the method
described in this paper. The top row of the figure shows a
concrete sphere on a table. The sizes of both of these images
are 256�256. The left hand side of Fig. 4(c,d) contains a
stripe of black region which indicates that this region in the
left image does not have corresponding pixels in the right
image. The bottom row shows images of a corridor and the
results. The size of the corridor images is 512�512. It can
be seen that our new method gives better results.
Real Images

Many other types of real images have been tested, and
good results have been obtained. Due to limitation of space,
only small portion of the tested images were shown here.
Fig. 5 gives some of the results obtained by using the meth-
ods in [13, 14] and our new method described in this paper.
Comparing the results in the third and the last columns of
the figure, it can be seen that our new method gives more
reliable matching results.
Running Times

Table 1 gives some of the typical running times of the
algorithm on different size of images with different dis-
parities. The tests were run on an 85MHz Sun SPARC-
server1000 running Solaris 2.5. The typical running time
for the algorithm on a 256�256 image is in the order of
seconds rather than minutes or even hours. The size of the
correlation window used for the images given in the table is
9�9. The reduction ratior used in the pyramid generation
process is 2. The last two columns in the table show the tim-
ing of the algorithm described in [14] (Method 2D path) and
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. The matching result for synthetic images. Top row g ives the images of a sphere on a
table. The bottom row shows the images of a corridor. (a,e) le ft image; (b,f) right image; (c,g) the
disparity map recovered using method in [13, 14]; and (d,h) t he disparity map recovered using our
new method.

Figure 5. The matching result for some real images. The first a nd second columns are the left
and right input images. The third column gives the matching r esults using the method described
in [13, 14]. The last column is the results obtained using our new method.

the algorithm described in this paper (Method 3D). There
is not much difference in the speed of the two algorithms.
But the 3D maximum-surface method developed in this pa-
per gives more reliable results. Interested readers could
try their own images by accessing the following web page:
http://www.dms.csiro.au/˜changs/cgi-bin/

6. Discussion on Reliability and Computational
Speed

The reliable results of our algorithm are achieved by ap-
plying the combination of the following techniques: (1)
Coarse-to-fine strategy is used. (2) The zero-mean nor-
malised cross-correlation similarity measure is used. (3)
The correlation coefficient value is used as input to the dy-
namic programmingstage. (4) Dynamic programming tech-
nique is used to find a maximum-surface in the correlation
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Table 1. Running times of the algorithm on
different images. (Image names: A=ball,
B=pentagon, C=flat. Third column is the
pyramid levels used.)

Image Pyr. Disparity Method Method
size lvls range 2D path 3D

A 256�256 2 [-19,7] 4.70s 5.29s
B 512�512 3 [-13,12] 25.05s 21.82s
C 1000�1000 4 [-39,27] 140.74s 136.25s

volume. By using the dynamic programming technique on
the input correlation coefficient volume, one will obtain a
more smooth surface within the volume. The maximum sur-
face method takes all the information into account, rather
than work individually for each of the epipolar lines.

The fast computational speed of our algorithm is
achieved in conjunction with some of the aspects mentioned
above for achieving reliability of the algorithm. Some of the
aspects are: (1) Fast zero-mean normalised cross correlation
is developed. (2) We have used a rectangular subregioning
technique for fast computation of correlation coefficients.
(3) Apart from having the advantages of increasing the re-
liability, the coarse-to-fine approach is also faster than one
without using it. (4) A two-stage dynamic programming
technique is used to find a maximum surface in the 3D cor-
relation volume. Rather than using the methods described
in [12, 4], a dynamic programming technique is used which
is computationally efficient.

7. Conclusions

We have developed a fast and reliable stereo matching
method using rectangular subregioning, fast correlation and
maximum-surface techniques in the coarse-to-fine frame-
work. The maximum-surface is obtained from the 3D cor-
relation volume using a two-stage dynamic programming
technique. The algorithm produces a reliable dense dispar-
ity map. The fast cross-correlation method was developed
from the box-filtering idea. The time spent in the stage for
obtaining the normalised cross-correlation is almost invari-
ant to the search window size. The processing speed is fur-
ther improved by segmenting the input image into subim-
ages and work with the smaller images which tend to have
smaller disparity ranges. The subregioning technique is also
helpful to reduce the memory storage space. The typical
running time for a 512�512 image is in the order of half
a minute rather than minutes or hours. The algorithm is
shown to be fast and reliable by testing on several different
types of images: both synthetic and real images.
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