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1 Introduction transform technique to detect rotational symmetry of line

Many objects around us are strongly constrained. For in- drawings. Jiang and Bunke presented an algorithm for de-
stance, not only cultural artifacts but also many natural ob- termining rotational symmetries of polyhedral objécts
jects are rotationally symmetrical. The goal of an image Parry-Barwick and Bowyéf developed methods that can
understanding system is mainly to identify and locate a detect both hierarchical and partial symmetry of 2-D set-
specified object in the scene. In such cases, the system musheoretic models with components constructed with a few
have some knowledge of the shape of the desired object.straight edges or polynomials. This method has the disad-
Symmetries are good candidates for describing shape.antage of being computationally intensive. Masuda ét al.
which is a powerful concept that facilitates object detection gegcriped a method of extracting rotational and reflectional
and recognition in many situations. These representationsg, ,metry by performing a correlation with the rotated and
;:ni]n gﬁ dufeee?sclnmigogb otics for recognition, inspection, grasp- reflected images. To extract rotational symmetry, they took
éymmetry can Be defined in terms of three transforma- Fhe original imag_e and then applied a_II possibl_e _rota_tions 0
tions in n-dimensional Euclidean spa@&": reflection, ro- it and correlated_m two d|mer_13|ons W|th the or|g|n_al image.
tation, and translation. Formally, a sub&of E" is sym- The transform.atlo.n was carried out using egc;h pixel as the
metrical with respect to a transformatianif T(S)=S. We center of rotation in turn. A good match S|gn|f|ed r_otanonql
concentrate only on rotational symmetry in this paper. A symmetry. The disadvantages were agsouated with the high
computational cost and memory requirements.

rotationally symmetrical shape is said to hefold sym- ) 1 O
metrical if the shape overlaps with itself after being rotated  15a and Chotf and Chou et af” have developed a se-

by any multiple of 27/n around its center. ries of methods for solving the recognition problems con-

Most of the work carried out on rotational symmetry Cerning rotationally symmetrical shapes. Their methods do

detection has been based on edge, contour, or point sefiot seem efficient, since the fold number must be found
information. Burton et at. considered a simple indexing beforehand. Pei and Lin use a modified Fourier descriptor

scheme to implement the exponential pyramid data struc-to normalize rotationally symmetrical shapes that can de-
ture for particular symmetriegthe rotational symmetries tect the fold number and rotation angle simultaneously on a
they considered are only 90 and 180 deg rotatioivablter binary image"* Leou and Tsd? proposed a simple but ef-

et al? described exact algorithms for detecting all rotational fective algorithm to determine the rotational symmetry of a
and involutior_lal symmetries in poin_t sets, pol_ygons, and given closed-curve shape.

polyhedra. Highnarh presented optimal algorithms for In this paper, we investigate the use of the statistics of

finding rotational symmetries of a planar point set. Zabrod- the gradient orientation for rotational symmetry detection

sky et al? defined a continuous symmetry measure to quan- . . ) ; .
tify the symmetry of objects. They also presented a multi- in a gray-scale image. The next section briefly describes the
gradient of an image and its orientation histogram. Then the

resolution scheme that hierarchically detects symmetrical ) e i
and almost symmetrical patterns in Ref. 5. But no result on algorithm for finding the fold number and the separation

rotational symmetry was given. Yutand Yuen and Chdn  lines for the symmetryor the orientation of the objecare
used the Hough transform to detect skewed and rotationalgiven. The algorithm is tested on both simulated and real
symmetry on a set of points. Yip et &hlso used a Hough  images.
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Pixels N~1
Fn(u)= > h(j) exp(—2miju/N), u=0,1,..,N—1.
j=0
2
Orientation The Fourier spectrurtF(u)|?=F,(u)F (u) is useful for
0 }( ) )l Py finding the base frequency, and hence the subperiod and
"""""""""" this subperiod is related to the fold number. Instead of us-

) ) ) ) S ing Eq. (1), we will search the sum of the subset of the
Fig. 1 lllustrative shape of the gradient orientation histogram for a Fourier spectrum because of the relationship stated in the
rotationally symmetrical object. foIIowing proposition

Proposition
2 Orientation Histogram

n
For an image (x,y), the surface gradient vectpr, 1] is nt > c(kL)=N"2 > |Fn(wn)?, 3
defined byl,=dl(x,y)/dx, I,=al(x,y)/dy. The orienta- k=t v=0
tion of this gradient vector can be calculated by
¢=tan*1[lyllx]. The domain ofp is [0,27). The gradient
is obtained by using a5 Sobel filtering operatioff It N-1
splits the kernels into 2 1 subkernels and iteratively cal- ¢(j)=N"1 E h(k)h(k+j),
culates the responses. The result is two responses for the k=0
x andy directions, respectively. Then the gradient orienta-
tion at this point of the image can be obtained. When both
I, andl, are zero at a point in the image, the gradient at

this point is treated as not defined. By having a set of bins Eq. (4) to find the fold ngmber. When a particqlargives
in the range off0,360, the orientation histogram of the & large sum of the Fourier spectrum over multiple frequen-

image can therefore be obtained. We note that the histo-Ci€S ofn, we take thisn as the fold number:
gram shape should be translationally symmetrical or nearly | _,
translationally symmetrical because of digitization error.

L-1

where

andL is the fold angle N=nL).
We use the right-hand side of the Eg) as rewritten in

Figure 1 illustrates the gradient orientation histogram for a UZO [Fr(om)[?,  n=2. (4)
rotationally symmetrical object. In the figuré,is the fold
angle(in this case, it is 120 deg or23). The fold number The algorithm we use for finding the fold number of a
equals 27/6. rotationally symmetrical object is:

1. Obtain the orientation histogram of the input gray-
3 Fold Number of Rotational Symmetry scale image.
Our algorithm is based on the intensity gradient orientation ~ 2- Calculate the Fourier transform and power spectrum
distribution of the image. From the previous section, the of the orientation histogram.
histogram of this gradient orientation image can be ob- 3. Search for the largest summation, as in &g.when
tained. It is clear that this histogram function is periodic n=2. For practical applications, thiscan be further
with period 360 degor 2m). That is,h(j)=h(j*2k=), constrained byn<K, whereK is the largest possible
k=0,1,2..., and G<j<N, whereh(j) is the gradient ori- fold number, say 15.
entation histogranfin our caseN=360). In particular, 360
bins is very useful because iif is the fold numbern di- 4 Orientations of Shapes

vides 360 forn=2,3,4,5,6,8,9,10,12. For a rotationally After the fold number of an object has been obtained, it is
symmetrical object, the orientation histogram should have ajso necessary to determine the orientation of the object.
circularly repetitive patterns. We can choose to evaluate the This can be done in many ways. Lin et al. use two types of
following function for obtaining the fold number: shape specific points, called the fold-invariant centroid
(FIC) and the fold-invariant radius-weighted mean
(FIRWM), for detecting the orientations of rotationally
, 1) symmetrical shapes. Chou et af® introduced a method,
called the fold principal axis, to define the orientations of
rotationally symmetrical shapes. Efrdescribed a universal
where n is the candidate fold number of symmetry principal axis method to define shape orientation.
(n=2). If for a particulam, CneafN) produces a maximum In this paper, the orientation of the object is easily ob-
value, we take this as the fold number. tained by evaluating the phase of the Fourier coefficient at
For a rotationally symmetrical object, its gradient orien- the corresponding fold number. The exponential form of
tation histogramh(j) will have subperiods ofN. Since Fp(u) can be written a&p(u) =|Fn(u)|exdj¢n(u)], where
h(j) is periodic, its Fourier transfor,(u) as defined in |Fp(u)| is the magnitude function, ang,(u) is its phase
Eq. (2) is useful for detecting subperiods: angle. Thisu is the fold number obtained in the previous

n

1 N-1
Cmea =0 2, 24 h(I)h

=1

kN
—+j
n
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section. The phase angle corresponding to the fold angle is
the orientation of the symmetrical object. The sequence of
operations for obtaining the rotational symmetry informa-
tion are:

1. Obtain the gradient of the input image.
2. Calculate the histogram of the gradient orientation.

3. Obtain the fold number of the object, as described in
the previous section.

4. Obtain the orientation of the object using Fourier
phase information.

5. Draw lines from the center of mass to show the sym-
metry parameters.

5 Experimental Results

The results for the described algorithm on simulated and
real images are given in this section. No initial smoothing
was applied to the original image before the gradient op-
eration. Because of digitization effects, the boundary of an
object with high contrast consists of mostly zigzagged short
line segments, and very often these line segments are either
horizontal or vertical with diagonal segments connecting
the horizontal or vertical short lines. Therefore, in most of
the gradient orientation histograms, peaks often appear at
45 deg and its multiple€90, 135, 180, 225, 270, and 315
deg. The histogram is circularly smoothed using a median
filter of length 5, that is, the smoothing window is wrapped
arou_nd at the ends since the angular data are CIrCl"IarIYFig. 2 (a) Counterexample when the algorithm might not work and
continuous. (b) ideal orientation histogram for (a) (where y = a + b= ¢ + d).

The histogram property is a necessary but not a suffi-
cient condition for symmetry detection; that is, for certain
nonsymmetrical objects, its orientation histogram might
still be translationally symmetrical. One example of this is
shown in Fig. 2. Figure @ shows a nonsymmetrical ob-
ject, while Fig. Zb) displays its idealized orientation histo-
gram. Although the orientation histogram is translationally
symmetrical, the object does not have the rotational sym-
metry property. However, as long as we know that the ob-
ject in the image is rotationally symmetrical, we can apply
the algorithm to detect rotational symmetry. If the condi-
tion is not sufficient, i.e., when the orientation histogram
shows translational symmetry but actually the object is not
rotationally symmetrical, a further step might be necessary
to check whether the object is actually rotationally sym-
metrical. These parameters or symmetry hypotheses can be
verified by obtaining a symmetry measusee Ref. 4 If
this symmetry measure gives a low value, we say that the
object is not symmetrical. If an object is convex, the histo-
gram property will not only be a necessary, but also a suf-
ficient condition for symmetry detection.

Figure 3 shows the process of obtaining the symmetry
information. Figure 4 gives the result of the symmetry de-
tection algorithm applied to several simulated images.

The algorithm works not only for binary images, where
the gradient information mainly occurs along the bound- .I| Ll i,

||’|| IIIII H‘ll

I ‘ I
() (b)

aries of objects, but also for gray-level images, where the (c) (d)
gradient operation is performed on every pixel in the im-
age. Fig. 3 Symmetry detection process: (a) original image, (b) the gra-

: : : dient orientation histogram of image (a), (c) magnitude of the Fourier
Figure 5 shows the results of detecting the rotational transform of the gradient orientation histogram (b) (zero frequency

symmetries of some graY'$Ca|e images. The(e are two darkyas suppressed for display purpose), and (d) the symmetry orien-
strips on the triangle of Fig.(b), and they will to some tation obtained.
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(b)
(d)

()

Fig. 6 Symmetry detection for images with noise added: (a) noisy
image of Fig. 5(b), and (b) noisy image of Fig. 5(d).

the algorithm applied to two other real images. The typical
CPU running time for a 256 256 image is 0.06 s on a Sun
SPARC10. The program has not been optimized to increase
the speed.

For objects that are not rotationally symmetrical, there
will be a trivial symmetry; that is, if an object is rotated 360
deg, it will come back to the original position. The fold

()

Fig. 4 Symmetry detection results for simulated images. The white number i_n this Case \_Ni” t_)e 1. If the background is textured,
lines show the symmetry information of a shape: (a) a pentagon, (b) the gradient orientation input of the background may mess
a square, (c) a triangle, and (d) an ellipse. up the algorithm. In this case, a prior segmentation of the

object from the background will be necessary to ensure that
the algorithm works. After the foreground or object has

extent affect the Shape Of the orientation histogram_ How- been iSOlated from the textured baCkgrOUnd, the described
ever, the algorithm has still detected the correct symmetry. Symmetry detection algorithm can be applied to the region
Figure 6 shows the results for images to which noise has that the object occupies. The segmentation of objects in a
been added. Figure(d shows an example of symmetry textured background is itself a research topic, and we do
detection using a range image of a propeller. Although the not deal with it here.
object in the image is not exactly rotationally symmetrical
(the leaf in the lower part of the image is smaller than the
other twg, the algorithm can still pick up the most likely
symmetry fold. Figures (b) and 7c) show the results of

6 Conclusions

A simple and fast rotational symmetry detection algorithm
has been developed that employs only the original gray-
level image and the gradient orientation information. The
results show that the statistics of the gradient orientation
can be used to obtain the rotational symmetry of an object
in a gray-level image. The CPU time for a 25856 image
takes only about 0.06 s on a Sun SPARC10, and most of
this time is spent on the gradient operation. The Fourier
transform of the 1-D orientation histogram is very fast.
Both simulated and real images have been tested and the
results are very convincing. The information concerning the
rotationally symmetrical shape can be of use for many ap-
plications(such as robot operation, further image segmen-
tation, etg.

Work has been performed only on a single object in an
image. The same algorithm can be applied to the separated
multiple objects in an image that can be obtained by seg-

© @ mentation. For every single object, apply the algorithm de-
scribed in this paper to obtain the rotational symmetry in-
Fig. 5 Symmetry detection for some more complex images (with formation. From the nature of the algorithm, only “low-
the symmetry information overlaid): (a) a star shaped image, (b) a " . .. Lo .
more complex triangle image, (c) a two-fold symmetrical object, and level” processing is involved, and therefore, it is possible
(d) a five-fold star shape. to implement the algorithm in parallel.
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Fig. 7 Symmetry detection results for real images. The white lines
separate different folds of a rotationally symmetrical shape: (a) a
range image of a propeller, (b) fluctuating crosses, and (c) a kalei-
doscopic portrait of the inventor of the kaleidoscope, David Brew-
ster. (The last two pictures are reproduced with kind permission
from Ref. 19, p. 144, Figs. 2.14 and 2.70.)
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