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Abstract

Stereo matching is important in the area of computer vision and photogrammetry. This paper presents a fast stereo
matching algorithm which produces a dense disparity map by using a pyramid structure, fast correlation and dynamic
programming techniques. Fast correlation is achieved by using the box filtering technique which is invariant to the size
of the correlation window. The disparity for each scan line is found in the correlation matrix by finding the best path
using dynamic programming rather than simply choosing the position that gives the maximum correlation coefficient.
Both synthetic and real image tests have been performed, and good results have been obtained.
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filtering, Similarity measure.

1 Introduction

The correspondence problem in stereo vision concerns
the matching of points or other kinds of primitives in
two images such that the matched points are the pro-
jections of the same point in the scene. The dispar-
ity map obtained from the matching stage may then be
used to compute the 3D position of the scene points
given knowledge about the transformation between the
two cameras.

Similarity is the guiding principle for solving the cor-
respondence problem. Corresponding features or areas
should be similar in the two images. Because of factors
such as noise and occlusion, the appearances of the cor-
responding points will differ in the two images. For a
particular feature in one image, there are usually several
matching candidates in the other image. It is usually
necessary to use additional information or constraints
to assist in obtaining the correct match. Some of the
commonly used constraints are:

1. Epipolar constraint: Under this constraint, the
matching points must lie on the corresponding
epipolar lines of the two images;

2. Uniqueness constraint: Matching should be
unique between the two images;

3. Disparity gradient constraint: For certain kinds
of 3D surfaces, the disparity gradient should be
within a certain limit.

Lotti and Giraudon [1, 2] used a correlation based algo-
rithm with an adaptive window-size that is constrained
by an edge map extracted from the image. They pre-
sented results on real aerial images. Intille and Bo-
bick [3] presented a stereo algorithm that incorporates
the detection of the occlusion regions directly into the
matching process. They developed a dynamic program-
ming solution that obeys the occlusion and ordering
constraints to find a best path through the disparity-
space image. They also used ground control points to
eliminate sensitivity to occlusion cost. Xionget al [4]
presented a stereo matching approach which integrates
area-based and feature-based processes.

In this paper we address some of the efficient and ro-
bust implementation aspects of the stereo matching al-
gorithms by using fast correlation and dynamic pro-
gramming techniques in a multi-resolution scheme.

The rest of the paper is organised as follows: Section 2
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reviews the box filtering techniques and derives the fast
correlation method. The detailed matching method is
described in Section 3. Section 4 shows the experimen-
tal results obtained using our stereo matching method.
Section 5 contains concluding remarks.

2 Fast Correlation

Barnea and Silverman [5] introduced a class of se-
quential algorithms for fast image registration. They
were designed to reduce computation in matching pro-
cedures using minimum dissimilarity measures like the
sum of the absolute differences (SAD). Konecny and
Pape [6] reviewed image correlation techniques accord-
ing to photogrammetric and mathematical fundamen-
tals.

Different similarity measures have been used in the lit-
erature [7, 8], and their performance and computation
cost vary. It has also been shown that the zero mean
normalized cross correlation and the zero mean sum
of squared differences tend to give better results [9].
We will use the zero mean normalized cross-correlation
(ZNCC) coefficient as the similarity measure of the
candidate matching areas. The estimate is independent
of differences in brightness and contrast due to the nor-
malization with respect to mean and standard deviation.

Let fmn be the intensity value of anM × N image f
at position (m,n), where f is to be box filtered into f̄ ,
i.e. obtaining the mean of the original image within the
box. We also have similar definition for a second image
g. The normalized cross-correlation of two windows
can be written as follows:

cij,d =
covij,d(f, g)

varij(f) × varij,d(g)
(1)

where

covij,d(f, g) =

i+K?

m=i−K

j+L?

n=j−L
(fm,n−f̄)(gm+d,n−ḡ)

(2)

var2ij(f) =

i+K?

m=i−K

j+L?

n=j−L
(fm,n − f̄)2 (3)

var2ij,d(g) =

i+K?

m=i−K

j+L?

n=j−L
(gm+d,n − ḡ)2 (4)

and d is the shift along epipolar lines;K and L define
the correlation window size. It can be seen from this
equation that the co-variance betweenf and g and the
variances of f and g at different positions in the image
need to be evaluated.

2.1 Box Filtering

McDonnell [10] described a box-filtering procedure for
mean calculation. The main advantage of box filtering

is its speed, which approaches four operations for each
output pixel and is independent of box size. For detailed
description of the technique please see [10].

2.2 Fast Calculation of Variance

Rearranging Equation (3), the following equation (Eq.
5) is obtained. It can be seen that the pixel variance
within the box can also be obtained during the same
pass as when calculating the mean. This is achieved by
accumulating the square of the intensity values while
accumulating original pixel values for mean calcula-
tion. The variance of points within the box is calculated
using Equation (5).

var2ij(f) =

i+K?

m=i−K

j+L?

n=j−L
(fm,n − f̄)2

=

i+K?

m=i−K

j+L?

n=j−L
f2m,n

−(2K + 1)(2L+ 1)f̄2

(5)

Therefore we have a fast way to obtain the mean and
variance of the input images for the calculation of the
cross-correlation that is to be used as a measure of sim-
ilarity between matching candidates from the left and
right images.

2.3 Fast Cross Correlation

Here again we will use the technique described in Sec-
tion 2.1 to achieve fast calculation of the cross correla-
tion. Rewriting Equation (2), we have:

covij,d(f, g) =

i+K?

m=i−K

j+L?

n=j−L
(fm,n − f̄)×

(gm+d,n − ḡ)

=

i+K?

m=i−K

j+L?

n=j−L
fm,n × gm+d,n

−(2K + 1)(2L + 1)f̄ × ḡ

(6)

Equation (6) is the numerator of Equation (1). Most,
if not all, of the image correlation in the literature is
performed using direct calculation of Eq. (6). Direct
calculation of equation (6) has(2K + 1)(2L + 1) re-
dundancies. Similar to the calculation for the variance,
cross correlation of two images can be obtained using
only a few multiplications.

In our case, the correlation is performed along the
epipolar line. If for any point in the left image, the
search window is assumed to be within [−w,+w] in
the right image, then the value of d in equation (6)
varies from−w to +w. The traditional way of obtain-
ing the correlation is to fix a point in the left image and



vary d in the range of [−w,+w] to calculate the corre-
lation coefficients.

In our new algorithm for fast correlation, we first fix
on one particulard all the points in the left image and
calculate the cross correlation between the left image
and the shifted right image of the amountd. Then we
increase the number ofd by 1, and repeat the process
of correlation calculation until the value ofd has gone
through [−w,+w].

The complexity of the algorithm isO(MND), where
M,N are the image row and column numbers andD is
the maximum disparity search range.

3 Matching Strategy

3.1 Correlation Cube

The result of the above correlation is a cube containing
the correlation coefficients as shown in Fig. 1(a). The
size of the cube depends upon the image size and the
disparity range (2w + 1).

3.2 Best Path in the Matrix

Most researchers [11] choose the position that gives the
maximum correlation coefficient as the disparity value.
We choose a slice of the correlation coefficient cube as
a 2D Correlation Matrix for each scan line of the in-
put image and use this matrix to obtain more reliable
disparities. The width of the matrix is the same as
the length of the scan line, and the height of the ma-
trix equals the correlation search range,2w+1. A typi-
cal Correlation Matrix is shown in Fig. 1(b). This im-
age/matrix is actually one slice of the correlation cube
obtained in Section 2.3. We will use the correlation ma-
trix to find the disparity for any one scan line. Rather
than choosing the maximum correlation coefficient, we
find a best path through the correlation matrix. The po-
sition of the path indicates the best disparity for this
scan line.

The algorithm for finding the best path through the cor-
relation matrix is performed by using a dynamic pro-
gramming technique [12]. The best path gives the min-
imum cost when certain constraints are imposed.

Sub-pixel accuracy can be obtained by fitting a second
degree curve to the correlation coefficients in the neigh-
bourhood of the disparity and the extrema of the curve
can be obtained analytically. This second degree curve
can be a parabola.

3.3 Coarse-to-fine Scheme

It has been shown that a multi-resolution or pyramid
data structure approach to stereo matching is faster than

one without multi-resolution [13], as the search range
in each level is small. Besides fast computation, a more
accurate disparity map can be obtained by exploiting
multi-resolution. The upper levels of the pyramids are
ideal to get an overview of the image scene. The de-
tails can be found down the pyramid at higher resolu-
tion [14].

During the process of projecting the disparity map from
the current level of the pyramid to the next (if current
level is not level 0), the image size was scaled up by the
value of r (reduction ratio), and the disparity value by
the samer. The disparity value where the position(i, j)
of the new image is not a multiple ofr was obtained by
linear interpolation.

Our proposed algorithm for stereo matching is:

1. Build pyramids withk levels, and the reduction
ratio of r; The upper or coarse resolution levels
are obtained by averaging the correspondingr×r
pixels in the previous level;

2. Initialize the disparity map as zero for levelk;
3. Perform image matching using the method de-

scribed in sections 3.1-3.3;
4. If k ?= 0, propagate the disparity map to the next

level using linear interpolation, setk = k−1 and
then go back to step 3; otherwise go to step 5;

5. Smooth the disparity map using a median filter.

4 Experiment Results

This section shows some of the results obtained using
the described method. A variety of images have been
tested, including Random Dot Stereograms, synthetic
images, and different types of real images. The image
size does not have to be a power of 2.

Fig. 3 shows the result obtained by applying the al-
gorithm to a pair of Random Dot Stereograms (RDS).
Fig. 3(a)(b) show the original left and right RDS, and
Fig. 3(c) is the 3D surface obtained showing the dif-
ferent levels of “cakes”. Fig. 4 gives the result of the
algorithm running on a synthetic image. Fig. 5 shows
the results for two close range real images. Fig. 6 shows
the results for two aerial photo images.

The computer used is a Sun SPARC10 running Solaris
2.5. The typical running time for the algorithm on a
256×256 image is in the order of half minute rather
than hours. Table 1 gives some of the typical running
times of the algorithm on different size of images with
different disparities.
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Fig. 1: (a) An illustration of the correlation matrix. (b) One horizontal slice of the correlation matrix in (a).
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Fig. 2: Image pyramids construction.
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Fig. 3: The matching result for Random Dot Stereograms. (a) left image; (b) right image; and (c) the 3D surface
recovered.

(a) (b) (c)

Fig. 4: The matching result for synthetic images. (a) left image; (b) right image; and (c) the 3D surface recovered.
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Fig. 5: The matching result for some close range images. (a,d) left image; (b,e) right image; and (c,f) the 3D surface
recovered.
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Fig. 6: The matching result for some aerial photo images. (a,d) left image; (b,e) right image; and (c,f) the 3D surface
recovered.

Table 1: Running times of the algorithm on different images.

Image name Image size Disparity range User time CPU time
x 3d 285x206 [-15,13] 22.650s 0.510s

circuit 512x512 [-29,29] 53.040s 3.900s
ruts 512x512 [-69,69] 96.680s 13.540s
flat 1000x1000 [-39,27] 206.100s 16.830s



5 Conclusions

We have developed a fast stereo matching method using
fast correlation and dynamic programming techniques
in the coarse-to-fine framework. The algorithm pro-
duces a reliable dense disparity map. The fast cross-
correlation was realized by using the box-filtering tech-
nique. The time spent in the stage for obtaining the
mean and standard deviation for the normalized cross-

correlation is almost invariant to the search window
size. The typical running time for a 512×512 image
is in the order of minutes rather than hours.

By using the zero-mean normalized cross correlation
(ZNCC) similarity measure rather than the simple SSD
or SAD, the reliability of the algorithm was increased.
The algorithm was shown to be reliable by testing on
several different types of images.
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