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ABSTRACT
Stereo image rectification transforms a pair of images into a
new pair such that the epipolar lines in the transformed im-
ages have the same direction as the image rows and matching
epipolar lines in di↵erent images have the same row index
to enable an e�cient and reliable dense stereo matching. In
this paper we propose a first closed-form algorithm to au-
tomatically rectify stereo images just using the fundamen-
tal matrix. The algorithm involves only direct and purely
geometric transformation processes. There is no iterative
or optimization processes for the rectification parameter es-
timation in our method. Real images have been used for
testing purposes, and convincing results have been obtained
from our algorithm. Comparison with the state-of-the-art
method shows that our method produces better rectification
results.

Categories and Subject Descriptors
I.2.10 [Vision and Scene Understanding]: 3D/stereo
scene analysis; I.4.8 [Scene Analysis]: Stereo

General Terms
Algorithms

Keywords
Stereo image rectification, Fundamental matrix, Epipolar
lines, Epipoles, Keystone e↵ect.

1. INTRODUCTION
Stereo image rectification is important in the analysis of

three dimensional scenes. The rectification process trans-
forms the input images into new ones where epipolar lines
are parallel to the x- axis and matching epipolar lines from
di↵erent images have the same row index. This process re-
moves the vertical disparities between matching points in the
original left and right images. The rectified images should
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be positioned on the same plane and parallel to the line
connecting the camera centers. The rectification process
should introduce minimal distortions for the rectified im-
ages. For stereo matching, image rectification can increase
both the reliability and the speed of disparity estimation.
This is because in the rectified images, the relative rotation
between the original images has been removed and the dis-
parity search happens only along the image horizontal scan-
lines. This rectification is also useful for human viewing of
stereoscopic images to reduce vertical parallax which often
causes eyestrain.

The rectification process usually requires certain camera
calibration parameters or weakly calibrated (uncalibrated)
epipolar geometries of the image pair and most algorithms
require the initial feature matching points as a part of the
inputs. Some algorithms obtain the rectification matrix just
from the image matching points.

Ayache and Hansen presented a technique for calibrating
and rectifying a pair or triplet of images [1]. In their case, a
camera matrix needs to be estimated. Jawed et al. presented
a hardware implementation for real time rectification using
FPGA [8]. Fusiello et al. presented a compact algorithm for
rectifying calibrated stereo images [4]. All these rectification
algorithms only work for calibrated cameras where camera
parameters are known.

There is also a large number of algorithms for uncalibrated
camera cases. Pollefeys et al. proposed a simple and e�cient
rectification method for general two view stereo images by
reparameterizing the image with polar coordinates around
the epipoles [14]. A similar approach is described in [2].
These two methods used a direct sampling approach based
on the epipolar geometry. A method on the rectification of
stereo images onto cylindrical surfaces was given in [16].

Hartley gave a mathematical basis and a practical algo-
rithm for the rectification of stereo images from widely dif-
ferent viewpoints [6]. Oram presented a similar method for
rectification for any epipolar geometry [13]. All of the above
algorithms require the fundamental matrix and the accom-
panying matching points information.

Isgrò and Trucco proposed a projective rectification method
which uses the matching points to estimate the rectification
matrices directly without the use of epipolar geometry [7].
Fusiello and Irsara proposed a quasi-Euclidean rectification
method which minimizes a rectification error [3]. Kumar
et al. used a similar approach to obtain the rectification ma-
trices directly from image matching points while considering
the di↵erent zoom factors of the two images [9].

Loop and Zhang proposed a technique for computing recti-
fication homographies for stereo vision using the fundamen-
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tal matrix between images together with all the points in the
images to minimize image distortion [10]. Robert et al. de-
scribed a method for rectification considering the minimiza-
tion of image distortion by preserving orthogonality and the
newly filled areas [15]. A similar approach is used in [5] for
obtaining rectifying transformations that minimize resam-
pling e↵ects. Monasse et al. proposed a three-step image
rectification method which involves optimizing one parame-
ter [12]. Mallon and Whelan used fundamental matrix and
regularly sampled points in the images for rectification [11].
All of these methods use the fundamental matrix and also
involve iterative or optimization process for rectification pa-
rameters estimation.

In this paper, we propose a first closed-form algorithm
for automatically rectifying two uncalibrated images only
using the fundamental matrix and no iterative parameter
optimization step is involved. All the steps that we used
only involve direct geometric transformation.

2. RECTIFYING UNCALIBRATED IMAGES
Our rectification process only requires the fundamental

matrix that can be obtained from matching points between
two images or from any other methods.

2.1 Move Epipoles to Infinity
Given the epipolar geometry defined by the fundamen-

tal matrix F
12

between two images, a pair of epipoles e
12

and e
21

in these two images can be obtained by solving
F

12

e
12

= 0 and FT
12

e
21

= 0 using a singular value decompo-
sition method, and then scaling the epipoles so that the third
elements are equal to 1. The image rectification process is to
initially transform the input images such that the epipoles in
the transformed images are at infinity on the x- axis. In the
usual case of left and right stereo image arrangement, the
epipoles of the transformed images are at the infinity point
(1, 0, 0)T .

One needs to find the mapping functions which will trans-
form the two epipoles e

12

and e
21

in the two original images
into the infinity point (1, 0, 0)T in the transformed images.
In order to reduce image distortions, image transformations
need to be as rigid as possible. In the following paragraph,
we will describe the algorithm steps for transforming the
epipoles into infinity. This transformation steps have been
used in several articles [6, 17].

Assuming that the image center is at (u, v, 1)T , one can use
the following transformation to shift the image coordinate
system to the image center:

T =

0

@
1 0 �u
0 1 �v
0 0 1

1

A . (1)

Then the image can be rotated such that the epipole after
translation e0

12

= Te
12

= (e0
12

[0], e0
12

[1], 1)T is further moved
onto the x- axis. This rotation transformation takes the form
of

R
1
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0

@
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1
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1

0
� sin ✓

1

cos ✓
1

0
0 0 1

1

A (2)

where ✓
1

= arctan(e0
12

[1]/e0
12

[0]). The next step will be to
project the epipole position to infinity. This transformation

can be achieved using the following matrix:

K
1

=

0

@
1 0 0
0 1 0

�1/k
1

0 1

1

A (3)

where k
1

= e00
12

[0] with e00
12

= R
1

e0
12

. The combined trans-
formation matrix is:

P
1

= K
1

R
1

T. (4)
This transformation will have the e↵ect of projecting the
epipole e

12

to infinity on the x- axis. Note that the values of
✓
1

and k
1

are obtained from the immediate previous trans-
formation operations. A similar transformation for the right
image which maps the epipole e

21

to infinity on the x- axis
can be obtained with P

2

= K
2

R
2

T. The corresponding val-
ues ✓

2

and k
2

for R
2

and K
2

for the right image are obtained
in a similar way as ✓

1

and k
1

for the left image.

2.2 Aligning Matching Epipolar Lines
After moving the epipoles of the two images to infinity

by applying P
1

and P
2

, the epipolar lines in the two trans-
formed images become parallel to the horizontal scanline.
However, the matching epipolar lines from the left and right
images usually do not lie on the same scanline. In this section
we present our new method for aligning matching horizontal
epipolar lines from the two images so that they will have the
same y value.

Three pairs of matching epipolar lines from the left and
right images are needed for our alignment purpose. These
three pairs of matching epipolar lines can be obtained by
firstly selecting three points on a vertical line passing through
the image center in the left image with the same spacing.
The middle point can be the center of the image, and the
other two points are one above and one below the center
point. The spacing for these points can be arbitrary. Then
epipolar lines passing through these three points in the left
image can be calculated using the fundamental matrix. The
three matching epipolar lines in the right image can also be
obtained. These three pairs of matching epipolar lines will
all be horizontal after the P

1

and P
2

transformations. The
middle epipolar line in the left image goes through the image
center. In order to make the matching middle epipolar lines
have the same y value, we first align the middle horizontal
epipolar lines between the left and right images by shifting
the right image vertically with

Tv =

0

@
1 0 0
0 1 �vm

0 0 1

1

A (5)

where vm is the y di↵erence between the two horizontal mid-
dle matching epipolar lines.

Next we need to find the transformation for aligning the
remaining two matching epipolar lines. Figure 1 illustrates
the cross sections of the two transformed images, perpen-
dicular to the epipolar lines and going through the image
center. The x- axis of the epipolar lines is perpendicular to
the page. The locations of the three epipolar lines on im-
age plane AMD are shown by the three small black squares,
while the locations of the matching epipolar lines on image
plane BFE are given by the three small dots which are to
be transformed to the locations at A, M, and D. H

1

, H
2

, G
1

,
and G

2

are the y coordinates of points A, D, B, and E, re-
spectively. The y coordinates of F and M are now zero after
the Tv shift for the right image.

The transformation matrix for alignment will take a form
of a projection matrix. It just transforms one point loca-
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Figure 1: Illustration for aligning matching epipolar
lines. Points A, M, D and B, F, E are the y loca-
tions of the horizontal epipolar lines. Point C is the
camera center. The x- axis of the epipolar lines is
perpendicular to the page.

tion to another for the matching epipolar lines. Scaling is
also necessary in the matrix. Here is the form for aligning
epipolar lines from B to A and from E to D:

A
2

=

0

@
1 0 0
0 wy 0
0 k0

y 1

1

A (6)

where wy and k0
y will be obtained using the location infor-

mation of the matching epipolar lines. To transform point
B with A

2

, we have0

@
1 0 0
0 wy 0
0 k0

y 1

1

A

0

@
0

G
1

1

1

A=

0

@
0

wyG
1

k0
yG

1

+ 1

1

A ⇠

0

@
0

w
y

G
1

k0
y

G
1

+1

1

1

A

(7)
This point matches (0, H

1

, 1)T . Therefore, we can have
wyG

1

k0
yG

1

+ 1
= H

1

(8)

Similarly, for points (0, G
2

, 1)T and (0, H
2

, 1)T , we can have
wyG

2

k0
yG

2

+ 1
= H

2

(9)

From Eqs. (8) and (9), we can solve wy and k0
y as8

>><

>>:

wy =
(G

2

� G
1

)H
1

H
2

(H
2

� H
1

)G
1

G
2

k0
y =

H
1

G
2

� H
2

G
1

(H
2

� H
1

)G
1

G
2

(10)

The matrix A
2

Tv aligns all the horizontal epipolar lines
in the right image to their matching horizontal epipolar lines
in the left image.

2.3 Keystone Effect Correction
After the alignment step as described early, matching epipo-

lar lines are horizontal and are on the same scanline. How-
ever, the spacings between the three epipolar lines used ear-
lier may not be the same due to the projective transfor-
mation. This is similar to the keystone e↵ect in projector
projections. To remove the keystone e↵ect, i.e., to make the
spacings between the horizontal epipolar lines equal, we de-
velop the following new method for our rectification purpose
for reducing transformation distortions. In Figure 2, dif-
ferent spacings |H

1

| and |H
2

| between neighboring epipolar
lines are to be transformed to the same spacing S.

With the law of sine, the relationships between some quan-
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Figure 2: Illustration for keystone e↵ect correction.

tities of the triangles 4AA0O and that of 4DD0O as shown
in Figure 2 can be written as:

sin ↵
1

S
=

sin �
1

H
1

and
sin(⇡ � ↵

2

)
S

=
sin �

2

H
2

(11)

which leads to
sin ↵

1

sin(⇡ � ↵
2

)
=

H
2

sin �
1

H
1

sin �
2

(12)

From this equation, we are to find the angle ✓ as shown in
Figure 2 and then the length S. With �

1

= ⇡ � ↵
1

� ✓ and
�

2

= ↵
2

� ✓, we have
sin ↵

1

sin(⇡ � ↵
2

)
=

H
2

sin(⇡ � ↵
1

� ✓)
H

1

sin(↵
2

� ✓)
(13)

and with the angle sum and angle di↵erence formulae, one
has

H
1

sin ↵
1

H
2

sin ↵
2

=
sin ↵

1

cos ✓ + cos ↵
1

sin ✓
sin ↵

2

cos ✓ � cos ↵
2

sin ✓
(14)

The solution for ✓ can be obtained from Eq. (14) and equa-
tion sin2✓ + cos2✓ = 1 as the following:

✓ = ± arcsin
p

1/(1 + g2) (15)
with

g =
H

1

sin ↵
1

cos ↵
2

+ H
2

cos ↵
1

sin ↵
2

H
1

sin ↵
1

sin ↵
2

� H
2

sin ↵
1

sin ↵
2

. (16)

There are two solutions for ✓. We choose the one which
satisfies Eq. (14). The values of ↵

1

and ↵
2

can be obtained
from f, H

1

and H
2

. With uncalibrated images, f is set to
1. From the obtained ✓, we can calculate �

1

and then the
length S can be calculated as S = H

1

sin ↵
1

/ sin �
1

.
The keystone correction matrix can be obtained using

the same procedure as used when calculating A
2

but with
G

1

= S and G
2

= �S. Given that there is only a projective
transformation without scaling for keystone e↵ect correction,
one can have a simpler matrix0

@
1 0 0
0 1 0
0 k0 1

1

A (17)

with k0 as the unknown. The transformed point of (0, H
1

, 1)T

becomes0

@
1 0 0
0 1 0
0 k0 1

1

A

0

@
0

H
1

1

1

A=

0

@
0

H
1

k0H
1

+ 1

1

A ⇠

0

@
0

H
1

k0H
1

+1

1

1

A (18)

This point matches (0, S, 1)T . Hence we have
H

1

k0H
1

+ 1
= S i.e. k0 =

H
1

� S
H

1

S
(19)

Here we denote the newly obtained matrix as H for keystone
e↵ect correction which will be applied to both left and right
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images. That is

H =

0

@
1 0 0
0 1 0
0 H

1

�S
H

1

S 1

1

A (20)

2.4 Deskewing Images
The rectified images after keystone e↵ect correction can be

further processed so that two orthogonal vectors in an origi-
nal image are close to orthogonal in the rectified image. The
two orthogonal vectors in the original image can go through
the image center, one horizontal and one vertical. Assuming
the two transformed vectors after keystone e↵ect correction,
i.e., after applying HP

1

to the original orthogonal vectors,
are m = (u

1

, v
1

, 0)T and n = (u
2

, v
2

, 0)T , with a skew matrix

S
1

=

0

@
1 s

1

0
0 1 0
0 0 1

1

A , (21)

we wish to make the two transformed vectors m and n after
applying S

1

orthogonal to each other, i.e., their dot prod-
uct is zero: hS

1

m,S
1

ni = 0. This gives an equation with
variable s

1

:
v
1

v
2

s2

1

+ (u
1

v
2

+ u
2

v
1

)s
1

+ u
1

u
2

+ v
1

v
2

= 0 (22)
and it can be solved with two solutions. The one with the
smallest absolute value is taken as s

1

. The matrix for the
right image S

2

can be obtained similarly, using HA
2

TvP2

instead of HP
1

.

2.5 Reducing Image Translation
The rectified images obtained by applying the transforma-

tion matrix S
1

HP
1

for the left image and S
2

HA
2

TvP2

for
the right image are almost always di↵erent from the original
images. Our intention is to minimize the image di↵erence
before and after the rectification process. An image trans-
lation can be carried out by using the sum of the position
di↵erences for the four corners of the rectified and the orig-
inal images.

The vertical shift should have the same value for both
the left and right rectified images, i.e., v0

1

= v0
2

. They are
obtained by calculating the average vertical di↵erences of
both the four corners in the left image and the four corners
in the right image, i.e., totaling of eight corners, before and
after applying transformations S

1

HP
1

and S
2

HA
2

TvP2

.
The horizontal shifts u0

1

and u0
2

for the left and right im-
ages can be di↵erent and will be obtained independently
for each image. u0

1

is obtained by calculating the average
horizontal di↵erences of the four corners in the left image
before and after applying transformations S

1

HP
1

. Simi-
larly u0

2

is obtained for the right image using transformation
S

2

HA
2

TvP2

. The transformation matrix for the shifts are

T
1

=

0

@
1 0 �u0

1

0 1 �v0
1

0 0 1

1

A and T
2

=

0

@
1 0 �u0

2

0 1 �v0
2

0 0 1

1

A

(23)

2.6 Algorithm Steps
The combined transformations to achieve the final image

rectifications are through the use of T
1

S
1

HP
1

and
T

2

S
2

HA
2

TvP2

for the left and right images respectively. If
we put the transformations in groups, they become:

for left image: T
1

S
1

H K
1

R
1

T
for right image: T

2

S
2| {z } H|{z} A

2

Tv| {z } K
2

R
2

T| {z }
" " " "
√ ¬ ¡ ¿

The transformations in group ¿ project the epipoles in the
two images to infinity and therefore all the epipolar lines
become horizontal. Transformations in group ¡ for the right
image align the matching epipolar lines between two images.
The H matrix in group ¬ corrects the keystone e↵ect so
that the spacings between epipolar lines become regular or
the same. The transformations in group √ deskew and shift
transformed images to minimize distortion. The steps of our
algorithm for stereo image rectification are the following:

1. Obtain or read in the fundamental matrix between two
views.

2. Uncalibrated stereo image rectification:

(a) Calculate the epipoles on the two images from the
F

12

matrix.
(b) Obtain the transformation matrices P

1

and P
2

for the left and right images using the method
described in Section 2.1.

(c) Obtain alignment transformation A
2

Tv for the
right image.

(d) Obtain keystone correction transformation H for
both images.

(e) Obtain the deskewing matrices S
1

and S
2

, and
obtain the translation matrices T

1

and T
2

.
(f) Apply the two transformation matrices T

1

S
1

HP
1

and T
2

S
2

HA
2

TvP2

to the left and right images
respectively and apply resamplings to obtain the
rectified images.

3. EXPERIMENTAL RESULTS
This section shows some of the stereo image rectification

results obtained using our new method described in previous
sections and also gives some comparison results. A variety
of real images have been tested. The fundamental matrix
for each pair of images can be obtained using the method
proposed in [18]. After we have obtained the fundamental
matrix for a pair of images, we can then carry out the rec-
tification process using our rectification algorithm. When
resampling the input images for rectification, bilinear inter-
polation can be used.

Figure 3 shows the results for the main steps of our rec-
tification process. Figure 3(a,b) show the epipolar lines
overlaid on the original stereo images. Figure 3(c,d) show
the epipolar lines transformed into horizontal lines. Note
that the matching epipolar lines are not yet aligned to each
other. Figure 3(e,f) show that the matching epipolar lines
are aligned between the left and right images. Figure 3(g,h)
are the final rectification results after correcting keystone ef-
fect, deskewing, and shifts. Figure 4 shows another example
of our rectification results. Figure 4(a,b) show the epipolar
lines overlaid on the original stereo images, and Figure 4(c,d)
are the final rectification results.

For majority of the cases, the keystone e↵ects are mini-
mum especially when the epipoles are further away from the
image centers. Figure 5 shows an example of keystone e↵ect
correction for the right image of a stereo pair. Figure 5(a)
shows the epipolar lines with di↵erent spacings, with larger
spacings on the upper part and smaller spacings on the lower
part of the image, while Figure 5(b) shows epipolar lines with
the same spacing after keystone e↵ect correction for the same
image.

In [11], Mallon and Whelan compared their method with
two other popular methods from the literature, Hartley’s [6]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: Rectification results for the main steps
of our algorithm. (a,b) Epipolar lines overlaid on
the original stereo images; (c,d) Epipolar lines trans-
formed into horizontal lines; (e,f) Matching epipolar
lines aligned between the left and right images; (g,h)
Final rectification results after correcting keystone
e↵ect, deskewing, and shifts.

and Loop and Zhang’s [10]. Mallon and Whelan’s results
showed that their method gives a much improved perfor-
mance than the other two methods. Our experimental re-
sults also confirmed that the results of [11] are better than
that of [6] and [10]. Because of this and the limitation of
space, in this paper we just show the results of our method
and that of Mallon and Whelan’s method which is currently
the state-of-the-art. Both our method and Mallon and Whe-
lan’s method use the same input for rectification, i.e., only
the fundamental matrix information. Figure 6 shows the
comparison results between ours and that of Mallon and
Whelan’s using the same set of fundamental matrices on the
‘Slate’ dataset. The ‘Slate’ dataset is an indoor o�ce scene.
It can be seen that our method produces smaller areas of
black pixels, i.e., more usable pixel areas in the rectified im-
ages. The method in [11] does not have all the distortion

(a) (b)

(c) (d)

Figure 4: Another example of our rectification re-
sults. (a,b) Epipolar lines overlaid on the original
stereo images. (c,d) Final rectification results.

reduction steps as in our method.
In terms of running times, our rectification process is very

fast, taking about 81 ms for a 640⇥480 pixel image on a
Linux PC with a 3.00GHz Intel Core2Duo CPU using the C
language. The majority of the CPU time was on the actual
image resampling process which takes about 76 ms. The
process for obtaining the rectification matrices only takes
about 4.7 ms.

4. CONCLUSIONS
In this paper, a new closed-form method for automat-

ically rectifying uncalibrated stereo images has been pre-
sented. The transformation matrices applied to the original
images are constructed just based on the epipolar geometries
between an image pair, i.e. only using the fundamental ma-
trix. There is no iterative parameter optimization process in
our methods. That is our method is in closed-form and with
just the fundamental matrix. Real images have been tested
and the results validate our new method. Comparison with
the state-of-the-art method shows that our method produces
better rectification results. Future work should include more
quantitative evaluations of di↵erent rectification methods.

(a) (b)

Figure 5: An example showing the keystone e↵ect
correction. (a) Epipolar lines with di↵erent spac-
ings. (b) Epipolar lines with the same spacing.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Rectification results of ours and Mallon
and Whelan’s on the ‘Slate’ dataset. (a,b) Epipolar
lines overlaid on the original stereo images. (c,d)
Results using Mallon and Whelan’s method. (e,f)
Results using our method.

5. ONLINE DEMO
An online web demo for stereo image rectification using

our method is available at:

vision-cdc.csiro.au/rectify2v
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