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Abstract

This paper presents fast moving window algorithms for calculating local statistics in a diamond, hexagon, and general polygonal
shaped windows of an image which is important for real-time applications. The algorithms for a diamond shaped window requires only
seven or eight additions and subtractions per pixel. A fast sparse algorithm only needs four additions and subtractions for a sparse dia-
mond shaped window. A number of other shapes of diamond windows such as skewed or parallelogram shaped diamond, long diamond,
and lozenged diamond shaped, are also investigated. Similar algorithms are also developed for hexagon shaped windows. The compu-
tation for a hexagon window only needs eight additions and subtractions for each pixel. Fast algorithms for general polygonal shaped
windows are also developed. The computation cost of all these algorithms is independent of the window size. A variety of synthetic and
real images have been tested.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In most of the image analysis and computer vision appli-
cations, the local processing windows are usually square or
rectangular shaped. The edges of these windows are aligned
with the image rows and columns. Because of the use of
such simple shapes, efficient processing of images can be
achieved. McDonnell (1981) described a box-filtering pro-
cedure for local mean calculation where the window is rect-
angular shaped. The main advantage of box-filtering is its
speed, which approaches four operations for each output
pixel and is independent of the box size. The filtering oper-
ation is also separable: two-dimensional filtering can be
implemented as two 1D filtering.

Other shapes of windows are also used. A circular
shaped window gives good isotropic property, but its com-
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putational cost is linearly proportional to the radius of the
circular window. Glasbey and Jones (1997) presented fast
algorithms for moving average and related filters in regular
octagonal windows as approximations to circular windows.
The algorithm requires twelve additions and subtractions
per pixel irrespective of the window size. Ferrari and Sklan-
sky (1984) proposed a two step method for obtaining the
mean of an arbitrary shaped window. The number of oper-
ations is equal to the total number of concave and convex
vertices of the window boundary. Because of the sampling
effect, the boundaries of diamond and hexagon windows
have many vertices, and the number of vertices also
depends on the size of the window. Therefore Ferrari and
Sklansky�s method will not be very efficient for diamond
and hexagon shaped windows. Verbeek et al. (1988) pre-
sented min or max filters for low-level image processing.
They gave six shapes for the min or max filter, including
a full square, a full diamond, a sampled diamond, a dis-
crete approximation of a full circle, the rim and the center,
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and eight contour points and the center. The computation
cost of the full diamond shaped min or max filter is propor-
tional to the size of the window. Soille and Talbot (2001)
presented a decomposition method of morphological oper-
ations for diamond shaped and rotated rectangles. van
Herk (1992) also developed a fast algorithm for local min
or max filters on rectangular and octagonal kernels. van
Droogenbroeck and Talbot (1996) presented a general
algorithm that performs basic mathematical morphology
operations with any arbitrary shaped structuring element
in an efficient way.

In some applications such as image processing and
stereo matching, the processing window can be diamond
or hexagon or general polygon shaped. In stereo matching
applications, different shaped windows can be used for
calculating correlation coefficients. The shapes of these
windows can be adaptive to the orientation of the object
boundaries. Diamond shaped window could be used when
object boundary are roughly in the diagonal direction as
shown in Fig. 1. Square and diamond shaped windows
are shown at object boundary in Fig. 1(a) and (b), respec-
tively. The center of the diamond window are closer to the
object boundary than that of the square window without
intersecting with the boundary. Baaziz and Dubois (1993)
used separable diamond shaped filtering for hybrid HDTV
image sequence coding. Diamond shaped window can also
be imagined as a rotated version of a square window as
shown in Fig. 2, although in discrete space the sides of
the diamond window have zig zag shapes.

In this paper we will present fast moving windows
algorithms for the calculation of local statistics such as
Object Boundary

Square Window

Object Boundary

Diamond Window

(a) (b)

Fig. 1. Different windows at an object boundary. (a) Square window at
object boundary and (b) diamond window at object boundary.

r

Fig. 2. Diamond shaped window. The cross is the window center, and r is
the radius of the window. The value of r in this figure is 3.
mean, variance, skew, and correlation using a diamond
or hexagon or general polygonal shaped window. The topic
is important for real-time applications. Our algorithms
require only seven or eight additions and subtractions per
pixel, while a sparse algorithm requires only four additions
and subtractions per pixel for local sums calculation for a
sparse diamond shaped window. Other variations of dia-
mond windows will also be investigated. Our algorithm
for hexagon shaped window requires only eight additions
and subtractions. The computational cost for general
polygonal shaped window is also given as a simple formula.

The rest of the paper is organised as follows: Section 2
describes three algorithms for local mean calculation in
diamond shaped windows. Section 3 gives two algorithms
for sparse and multiple-shift diamond windows. Section 4
presents fast algorithms for other variations of diamond
window shapes, including skewed or parallelogram shaped
window, long diamond shapes, lozenge shapes, and rotated
diamonds. Section 5 shows algorithms for hexagon shaped
windows. Section 6 gives algorithm for general polygonal
shaped windows. Section 7 describes methods for extend-
ing the local mean calculation to variance, skew, and cor-
relation calculations. Section 8 shows the experimental
results obtained using our fast algorithms applied to a vari-
ety of images. Section 9 gives concluding remarks.

2. Diamond shaped local sum calculation

In this section we propose three algorithms for obtain-
ing the local sums in a diamond shaped window of an
image. Fig. 2 shows the shape of a diamond window, and
the cross in the figure indicates the window center. The size
of the window is defined by its radius r. The size, or area,
of the diamond shaped window with radius r is then
2r2 + 2r + 1. There will be one division for each pixel on
the images for obtaining the mean value from the local
sums. Because division operation is usually expensive,
one may wish to use just the local sums. In the rest of this
paper, we will concentrate on the calculation of local sums.

2.1. Edge-Updating algorithm

Assuming the local sum of a diamond window has been
obtained at a particular position, when we slide the window
horizontally to the right by one pixel to find the new sum,
we only need to add in the pixel values from the leading
edge with black circles and triangles and subtract out the
pixel values from the trailing edge with white circles and
triangles as illustrated in Fig. 3. For those pixels marked
with circles, they lie on the lines with 45� angles from the
horizontal direction. For those pixels marked with trian-
gles, they lie on the lines with �45� angles from the hori-
zontal direction.

Note that the sums of those pixel values on diagonal
lines can be obtained using the moving window idea as
shown in Fig. 4. The computational cost is only two addi-
tions and subtractions for each point on a particular line



Fig. 3. Diamond shaped window updating process using 45� and �45�
lines. The black circles and triangles are the image pixels coming into the
diamond window and the white circles and triangles are the pixels leaving
the window as the diamond window moves one pixel to the right. The
cross with the dash-line indicates the new diamond window center, while
the cross indicates the previous window center.

(a) (b)

Fig. 4. The updating process for diagonal lines. Only two additions and
subtractions are needed for each linear window position. (a) The �45�
line, where the length of window along this line is r + 1 and (b) the 45�
line, where the length of window along this line is r.

Fig. 5. Diamond composed of two grids: the black grid with (r + 1)2

pixels, and the white grid with r2 pixels.
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direction irrespective of the window length. The shaded tri-
angle as shown in Fig. 4(a) indicates the pixel value to be
added and the white triangle indicates the pixel value to
be subtracted from the running sum. The length of the run-
ning window for the �45� line is r + 1. Fig. 4(b) shows the
case for the 45� lines. The length of the running window is
r, i.e. one pixel less than that of the �45� line.

After obtaining the running sum on the two diagonal
line directions, the updating process for the local sum of
a diamond shaped window can be carried out. There are
four additions and subtractions for updating the diamond
window sum based on the running sums of the diagonal
pixels. Because there are two additions and subtractions
when carrying out each of the four diagonal lines, the num-
ber of operations for diamond shaped window will be eight
additions and subtractions. Note that the local sums for
linear windows at the 45� and �45� at each point of the
images are obtained and stored before updating the local
sums for a diamond window. So the calculation of local
sums for ‘‘leading’’ edges do not need to be carried out
again when these edges become ‘‘trailing’’ edges. We call
this algorithm for obtaining the local window sum the
Edge-Updating (EU) algorithm. The algorithm steps are:

(1) Carry out the local sum for a linear window at �45�
with window length r + 1 for each pixel of the image
and store the local sum values into a temporary
image;
(2) Carry out the local sum for a linear window at 45�
with window length r for each pixel of the image
and store the local sum values into another tempo-
rary image;

(3) Obtain the pixel sum for the first position (r, r) of the
diamond window on the top left of the input image
by direct pixel value summation;

(4) For the rest of any particular scanline of the image,
the local sum of a diamond window is obtained by
adding in the local sums of the leading edges and sub-
tract out the local sums of the trailing edges obtained
in Steps 1 and 2. The window positions on the left
side of the image (except the top one) can be obtained
by updating the diamond window from top and bot-
tom of the window.

2.2. Two-Grids algorithm

As can be seen from Fig. 5, the pixels in the diamond
window consist of the (r + 1) · (r + 1) black dots and the
r · r white dots (or circles) interleaved together. The cen-
ters of these two different sized grids coincide with each
other. We can therefore obtain the pixel sums for the dia-
mond window by adding together the black pixels sums
and the white pixels sums, i.e. adding together the pixel
values on the two different sized grids. We name this
algorithm the Two-Grids (TG) algorithm.

For obtaining the sums of the white dots, we can adopt
the separable principle by first adding the pixels along the
�45� lines, and then along the 45� lines. Each pass only
requires two additions and subtractions for each position.
Similarly, the sums of the black dots can be obtained.
Although the black and the white grids are interleaved as
shown in Fig. 5, we need to obtain the local operations
at each pixel position for both the black and the white pix-
els. The first pass for obtaining the black pixels sums along
the �45� lines can be combined with the first pass for
obtaining the white pixels sums of the same direction. That
is, after obtaining the local pixel sums for the white pixels,
the local sums for black pixels have already been obtained.
As illustrated in Fig. 6, ‘‘Sum-r1’’ is the local sum from
pixel values at positions ‘‘A’’, ‘‘B’’, and ‘‘C’’. ‘‘Sum-r2’’ is
the local sum from pixel values at positions ‘‘B’’, ‘‘C’’,
and ‘‘D’’ with the window shifted. ‘‘Sum-r2’’ is obtained
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Fig. 6. Obtaining the running sum of linear window sized r + 1 while
obtaining the running sum of linear window sized r.
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by adding in ‘‘D’’ to ‘‘Sum-r1’’ to obtain a temporal value,
say ‘‘Sum’’, and subtracting out ‘‘A’’ from ‘‘Sum’’. This
temporal value ‘‘Sum’’ is the local running sum for the
black pixels. Therefore there is no extra cost for obtaining
the black pixel sums along the �45� lines except an assign-
ment operation to store the needed values. The steps of the
TG algorithm can be summarised as the following:

(1) Along the �45� line, update the white pixels sums
with window length r (two additions and subtraction
for each pixel) and obtaining the black pixels sums
from the white sums (no additional operation is
needed except storing the needed sum) for each point
of the image; store the local sums into two different
temporary images;

(2) Along the 45� lines, obtain the window sums (length
r) for the white pixels (two additions and subtractions
for each pixel) based on the local sums for the white
pixels obtained from the previous step;

(3) Along the 45� lines, obtain the window sums (length
r + 1) for the black pixels (two additions and subtrac-
tion for each pixel) based on the local sums for the
black pixels obtained from Step 1;

(4) Finally add together the white pixel sums and the
black pixel sums obtained from Steps 2 and 3 within
the diamond window (one addition for each pixel).

So the total addition and subtractions for each pixel on
the image is seven for obtaining the local sum within a dia-
mond shaped window.

2.3. Grid-and-Edges algorithm

As in Fig. 7, the diamond window comprises of the grid
with the black dots, the grid with the white dots (which has
Fig. 7. Diamond sum by grid and edges. The sum of the pixels in the
diamond window equals the sums of the black and white circle grids, black
triangles, and white triangles.
one pixel offset upward with respect to the black grid), the
black triangles, and the white triangles. The grid size used
in this case is equal to r2 for both the black and the white
grids. We can use the following steps to obtain the grid
sums:

(1) Carry out the running sums along the �45� lines with
window length r, and store the values for each pixel.
This includes the running sums for the black dots,
white dots, and the black triangles;

(2) Carry out the running sums along the 45� lines with
window length r + 1 for the white triangles, and store
the values for each pixel;

(3) Obtain the small grid sums by running the linear win-
dow sum along the 45� lines based on the temporary
result in Step 1;

(4) Add the small black and the white grids together;
(5) Add in the running sum for the black triangles;
(6) Add in the running sum for the white triangles.

Therefore, the total computation cost will be nine addi-
tions and subtractions per pixel on the image: 4 for obtain-
ing the grid sums, 1 for adding the sum of the offset grid, 1
for adding the sum of the black triangles, 2 for obtaining
the running sums along the 45� line, and 1 for adding the
sum of the white triangles. We name this algorithm the
Grid-and-Edges (GnE) algorithm.

The computational cost for each of the algorithms
described in this section is invariant to the size of the win-
dow. If the window size r is very small, the direct imple-
mentation approach can be computationally cheaper than
the moving average methods.

3. Sparse and multiple-shift diamonds

Our algorithms described in the previous section require
seven or eight or nine additions and subtractions per pixel.
In this section we propose two algorithms for efficiently
obtaining the sum or mean in a sparse or a multiple-shift
diamond window.

We can use the sparse black pixels shown in Fig. 8(a) to
obtain the mean value. The number of black pixels in the
diamond window is (r + 1)2. The summation of the black
pixels can be achieved by using the separable two pass pro-
cess along the 45� and the �45� lines. So the computation
requirement is only four additions and subtractions. We
call this the sparse algorithm. This algorithm clearly does
not work with the special chess-board image because direct
application of this algorithm on this image will produce
complementary result. For such kind of special images,
the algorithms described in Section 2 should be used. This
sparse algorithm also produces spatially varying error in
mean estimate compared to the algorithms in Section 2.
This spatial variation is caused by different local frequency
content of the image.

We can also use a window shape which contains a multi-
ple-shift of the sparse diamond window as shown in
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Fig. 8. (a) Sparse diamond shape for obtaining mean values and (b)
multiple-shift window shape for obtaining mean values.

(a)

(b)

Fig. 10. (a) Digital line segment with dx = 3 and dy = �1 and (b) skewed
window by stacking five line segments shown in (a) together.
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Fig. 8(b) for mean calculation. The drawing contains the
black dots, the white dots, and the dashed dots. The white
dots plus the dashed dots in the bottom half of the drawing
(WDdown) is the same shape as the black dots (BD), except
shifted one pixel down. The white dots plus the dashed dots
in the top half of the drawing (WDup) is the same shape as
the BD, except shifted one pixel up. The mean may be
obtained by averaging the sums of the pixel values in the
three grids WDdown, BD, and WDup. We call this the Mul-
tiple-Shift (MS) algorithm. The computation involves six
additions and subtractions and one division for each win-
dow position in the image.

4. Variations of diamond shaped window

The edges of the diamond windows described earlier all
have 45� or �45� directions. In this section we will describe
some variants of the standard diamond window and pro-
pose algorithms for obtaining the local sum or mean for
each of these windows.

4.1. Skewed diamond or parallelogram shape

Fig. 9 shows two diamond shaped windows which may
be taken as the skewed rectangular windows. Fig. 9(a)
shows a window skewed horizontally, while Fig. 9(b) shows
a window skewed vertically. These shapes are actually par-
allelograms with one pair of edges aligned with image rows
or columns. Two of the parameters are the lengths of the
dx

dy

k2

k1

dy
dx

k1

k2

(a) (b)

Fig. 9. Skewed diamond shapes. (a) Window skewed in the horizontal
direction and (b) window skewed in the vertical direction.
window edges, k1 and k2. The other two parameters, dx
and dy, define the skewness of the window shape, where
dx and dy are integer numbers which have no common
divisors. The line representation of these two sides can be
carried out using Bresenham lines (Bresenham, 1965) or
periodic lines (Jones and Soille, 1996). An example of a dig-
ital line segment with dx = 3 and dy = �1 is shown in
Fig. 10(a). Fig. 10(b) shows a skewed diamond window
by putting together five of the line segments shown in
Fig. 10(a).

We adopt the separable principle for obtaining the pixel
sums within the skewed diamond window. The first pass is
for obtaining the running sums along the digital lines rep-
resented by dx and dy. The second pass will carry out the
running sums horizontally (for shapes similar to Fig. 9(a))
or vertically (for shapes similar to Fig. 9(b)) based on the
values obtained from the previous pass. The algorithm only
needs four addition and subtractions per pixel in the image.
General parallelogram shapes where none of the sides is
aligned with the image row or column can also be used.
In this case, another pair of parameters describing the slope
of the sides is needed.

4.2. Long diamond, lozenge, diamond with angle

The local window can also be a rotated rectangle, or a
long diamond shape as shown in Fig. 11(a). We need four
parameters to define this window: dx, dy, k1, and k2. dx
k2

k1

dx
dy

dy

dx

k1

(b)(a)

Fig. 11. (a) Elongated diamond shapes and (b) lozenged diamond shapes.



Fig. 12. Long window containing gap pixels. Digital lines along the long
edge of the window have the same slope as in Fig. 10(a). The slope on the
orthogonal direction is defined by dx = 1 and dy = 3.

Fig. 13. Two hexagon shaped windows.

dy

dx

Fig. 14. Hexagon shaped window updating.

C. Sun / Pattern Recognition Letters 27 (2006) 556–566 561
and dy give the slope for the line with length k1. The lines
in the orthogonal direction will have slope given by dy and
�dx, and have length k2. We will then use the separable
principle by carrying out the running sum along one direc-
tion first and then along the other direction. The computa-
tion cost will be four additions and subtractions per pixel in
the image.

Depending on the parameters used for the diamond win-
dow, there will be situations when the window does not
include all the points in the window as shown in Fig. 12.
For those pixels not included in the computation, we call
them the gap pixels. A special case is when dx = 1,
dy = 1, as in the case of sparse diamond as shown in
Fig. 8(a). The positions of these gap pixels may be worked
out based on the shape of the digital lines used for the win-
dow; but it is not an easy task. We will leave this for future
work. For the lozenge and rotated diamond shapes to be
discussed later, there may also be gap pixels in the window.
However, the skewed diamond shape does not have gap
pixels in the window as illustrated in Fig. 10.

Another variant of the diamond window is called
lozenge shaped, or rhombus shaped window, as shown in
Fig. 11(b). Three parameters can define the window shape:
dx, dy and k1. dx and dy gives the slope for the line on the
top right side of the window. The slope for the line on the
top left side of the window will be given by �dx and dy.
Each side of the window has the same length k1. We can
use the separable principle to obtain the window sums.
The computation cost for this case will be four additions
and subtractions per pixel position in the image.

The standard diamond can be rotated by a certain angle.
However, this is a special case for the long diamond shape,
as shown in Fig. 11. In this special case k1 = k2. The rota-
tion angle defines the dx and dy values. The computation
cost for this case will be four additions and subtractions
per pixel position in the image if using the separable prin-
cipal to obtain the window sums. This is similar to the case
of sparse diamond shape as shown in Fig. 8(a).

5. Hexagon shaped windows

A different window shape is the hexagon as illustrated in
Fig. 13. We first need to obtain the running sums along the
two line directions which are not horizontal. The exact
slopes for the two lines (for the left hexagon in Fig. 13)
are tanðp=3Þ and tanð�p=3Þ. But in a digital implementa-
tion, we need to use two integers dx and dy to represent
the line slopes. The dx and dy values as illustrated in
Fig. 14 can be calculated from the number of pixels of
the top edge of the hexagon. If the number of pixels on
the top edge is l (this number needs to be odd so that the
shape of the hexagon can be symmetric), dx can take the
integer value of l/2. dy can be calculated by using the inte-
ger part of

ffiffiffi
3

p
l=2.

The window updating procedure in this case will be sim-
ilar to the process we used for the Edge-Updating algo-
rithm described in Section 2.1. The window length for the
line direction with brick texture in Fig. 14 is dy, and the
window length for the line direction with gray shade is
dy � 1. We need four additions and subtractions for updat-
ing the running sums for the non-horizontal edges. The
cost for obtaining each of the running sum for the non hor-
izontal edge has two additions and subtractions. Therefore
we have eight (2 · 4) additions and subtractions for each
window position in the image. The local sums for linear
windows along non-horizontal edges at each point of the
images are obtained and stored before updating the local
sums for a hexagon window. So the calculation of local
sums for ‘‘leading’’ edges do not need to be carried out
again when these edges become ‘‘trailing’’ edges.

Similar process can be used to obtain the local sum for
the hexagon shape shown on the right of Fig. 13. In this
case, we can move the hexagon window from top to
bottom of the image rather than from left to right, and
the slopes of the non-vertical edges are tanðp=6Þ and
tanð�p=6Þ.

Table 1 summarizes the number of addition and sub-
traction operations for each of the algorithms described
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a1

a2
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b2

b1
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Fig. 15. Some examples of polygonal shapes. (a) Triangle with a
horizontal edge; (b) triangle with a vertical edge; (c) trapezoid; (d)
pentagon; (e) heptagon; (f) general polygon with one horizontal edge;
(g) general polygon with two horizontal edges; (h) general polygon with
two sets of parallel edges (one set with a1, a2, and a3; another set with b1
and b2).

Table 1
The computation costs (numbers of additions and subtractions) for different algorithms

Radius Diamond Other

EU TG GnE SD MS S/L/L/A Hex

r = n 8 7 9 4 6 + 1 4 8

EU: Edge-Updating; TG: Two-Grids; GnE: Grid-and-Edges; SD: Sparse Diamond; MS: Multiple-Shift; S/L/L/A: the window shapes for skew, long,
lozenge, and diamond with angle; Hex: hexagon shaped window.
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in Sections 2–4. All the algorithms shown in the table have
constant computation cost. That is the computation cost is
invariant to window sizes. One more division operation is
needed to obtain the mean from the local sum if needed
(except the multiple-shift method which generates local
means).

6. General polygonal shaped windows

Similar algorithms using edge updating can also be
developed for general polygonal window shapes such as tri-
angle, trapezoid, pentagon, heptagon, and decagon. Fig. 15
gives some example polygonal window shapes.

We will now derive a general expression for the compu-
tational cost for general polygonal shaped windows. Let n
be the number of sides of the polygon, m be the number of
sides which are aligned with the window�s moving direction
either horizontally or vertically, p be the number of pair of
polygon sides which are parallel to each other and with the
same length and not aligned with the windows moving
direction. For each edge of the polygon window, there
are two additions and subtractions for obtaining the run-
ning sums. Because we do not need to calculate the running
sums for the m sides which are aligned with the windows
moving direction. We then have 2(n � m) additions and
subtractions for just obtaining the running sums for edges.
We also need to add in or subtract out these running sums
to obtain the sums for the whole window. Then we have
3(n � m) additions and subtractions for a general poly-
gonal window. If there are p pairs of edges which are in
the same direction and having the same length (as for the
opposite edges in the shape of hexagon or octagon win-
dows), then redundant calculation of 2p for the running
sums can be eliminated. Then the computation cost, C, is

C ¼ 3ðn� mÞ � 2p ð1Þ
The computational cost is related to the number of sides,
but is independent of the size of the polygonal windows.
This formula holds for all the regular even sided polygons
with opposite sides parallel to each other.

Some example values of n, m, p, and C for different
polygonal shaped windows is given in Table 2. Take the
hexagon shape for example, the number of sides, n, is 6.
The number of sides that are aligned with the windows
moving direction, m, is 2. The number of pairs of parallel
sides/edges having the same length, p, is 2. Therefore based
on Eq. (1) the computation cost is eight additions and
subtractions for a hexagon shaped window.
For polygon windows with a set of parallel and
equal length edges, if this set contains more than two
edges as indicated by a1, a2, and a3 in Fig. 15(h), further
computation redundancy exists and can be eliminated. A
more general formula than that expressed in Eq. (1) for
C is

C ¼ 3ðn� mÞ �
Xp

i¼1

2ðni � 1Þ ð2Þ



(a) (b)

Fig. 16. 3D diamond shapes. (a) Non-separable and (b) separable.

Table 2
Example numbers for n, m, p, and C for different polygonal shaped
windows

Polygon shape n m p C

Triangle (Fig. 15(a)) 3 1 0 6
Square/rectangle 4 2 1 4
Trapezoid (Fig. 15(c)) 4 2 0 6
Pentagon (Fig. 15(d)) 5 1 0 12
Hexagon (Fig. 13) 6 2 2 8
Heptagon (Fig. 15(e)) 7 1 0 18
Octagon 8 2 3 12
Polygon (Fig. 15(f)) 5 1 0 12
Polygon (Fig. 15(g)) 5 2 0 9
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where ni > 1 is the number of parallel edges with equal
length within a set, and p is the number of such sets. If
all the ni�s equal 2, Eq. (2) becomes Eq. (1).

We can also consider a 3D diamond shaped window for
3D images. Fig. 16(a) shows a 3D diamond shape which is
not separable, while Fig. 16(b) shows a different 3D dia-
mond shape which is separable. In this case the 3D local
sum can be obtained by first accumulating the 2D sum
using the diamond shaped window, and then carrying out
the sum in the orthogonal direction based on the sums
already obtained.

7. Other types of operations

Local pixel variance within a diamond, hexagon or
polygonal shaped window can also be obtained quickly
during the same process as when calculating the local
sum or mean as described in Sections 2–6. This is achieved
by accumulating the square of the intensity values while
accumulating original pixel values for mean calculation.
fij is the image pixel value at position i, j. D is the set of pix-
els within the local window shape, and N is the number of
pixels in D. The first term

P
m;n2Df

2
m;n at the r.h.s. of the fol-

lowing equation for variance calculation can be obtained
during the same process as the local sum or mean is
calculated.

varijðf Þ ¼
1

N

X

m;n2D
ðfm;n � �f ijÞ

2 ¼ 1

N

X

m;n2D
f 2
m;n � �f

2

ij
where �f ij is the local mean. High-order statistics such as
local skew 1=N

P
m;n2Dðfm;n � �f ijÞ

3 can also be obtained
using the following equation:

skewijðf Þ ¼ 1=N
P

m;n2D
f 3
m;n � 3S�f ij þ 2�f

3

ij ð3Þ

where S ¼ 1=N
P

m;n2Df
2
m;n.

Local cross correlation within a diamond, hexagon or
polygonal windows for two images can also be obtained
efficiently. Cross correlation coefficients can be used as a
reliable measure of similarity for matching purposes. The
cross correlation can be defined as

covij;dxdy ðf ; gÞ ¼
X

m;n2D
fm;n � gmþdx;nþdy � N�f ij � �giþdx ;jþdy

where dx and dy are the shifts for image g along the x and
the y axes. The first term of the r.h.s. of above equation is
the summation of the pixel multiplications over the cor-
relation window with the image g shifted. Similar to the
process of calculating the variance, the multiplication of
fm;n � gmþdx;nþdy is used rather than f 2

m;n. The second term
of the r.h.s. of the above equation is straight-forward
calculation using the available mean values. The local cross
correlation in the above equation can be normalised with
the local variance.

The fast algorithm described for cross correlation
can also be easily adopted to obtain the sum of absolute
difference (SAD) (using SADij;dxdy ðf ; gÞ ¼

P
m;n2Djfm;n �

gmþdx;nþdy j) and sum of squared differences (SSD) (using
SSDij;dxdy ðf ; gÞ ¼

P
m;n2Dðfm;n � gmþdx;nþdy Þ

2) measures effi-
ciently. See (Sun, 2001) for fast algorithms using rectangu-
lar shaped windows for local statistics in N-dimensional
images and see (Sun, 2002) for correlation calculation for
stereo matching.

Soille and Talbot (2001) proposed methods for direc-
tional morphological filtering at arbitrary angles. They also
proposed decomposition based methods for diamond
shaped windows and rotated rectangles min or max opera-
tion. The computation cost of their algorithms is six com-
parisons for sparse diamond and ten comparisons for full
diamond shapes. We can adopt the techniques for the
rotated rectangle algorithms in (Soille and Talbot, 2001)
for our skewed and lozenge window shapes min or max
operations. Only six comparisons are needed for each pixel.

8. Experimental results

This section shows some of the test results obtained
using our new algorithms described in this paper. A variety
of images have been tested, including synthetic images, and
different types of real images.

8.1. Image tests

Fig. 17 shows some obtained results using different algo-
rithms developed in this paper. Fig. 17(a) is the input
image. Fig. 17(b)–(e) gives the results obtained by using



Fig. 17. The mean filtering results using different shapes of windows. (a)
Input image; (b) using diamond window using the Edge-Updating
algorithm (r = 5); (c) result using a sparse window (r = 5); (d) result using
skew in x shaped (dx = 1,dy = 1,k1 = 7,k2 = 1); (e) result using long
diamond (dx = 1,dy = 1,k1 = 7,k2 = 3); and (f) result using max filter
(dx = 1,dy = 1,k1 = 7,k2 = 3).

Table 3
Average errors for each pixel when using Sparse and Multiple-Shift
algorithms

Image names Window sizes (r) SD error MS error

Random1 3 8.820 4.306
7 4.848 1.420
11 3.338 0.755

Liz 3 2.150 2.224
7 1.339 1.323
11 0.882 0.862

Pentagon 3 0.922 1.037
7 0.583 0.591
11 0.421 0.415

Diamond 3 0.775 0.995
7 0.567 0.642
11 0.468 0.507

SD: Sparse Diamond algorithm; MS: Multiple-Shift algorithm.

Table 4
Running times of different algorithms with different window sizes (s)

Window sizes (r) Drct EU TG GnE

1 0.147 0.483 1.039 0.640
4 0.396 0.475 1.032 0.635
7 0.781 0.468 1.008 0.635
10 1.381 0.467 1.007 0.631
13 2.133 0.467 1.005 0.629

Image size is 1024 · 1024.
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diamond, sparse diamond, skew diamond, long diamond
for local mean calculation. The results in Fig. 17(b) and
(c) are very similar after using diamond and sparse dia-
mond window filtering. Fig. 17(d) is essentially a linear
averaging along the 45� line. Fig. 17(f) shows the result
by running the max filter or dilation operation.

8.2. Different results for diamond, sparse diamond and

multiple-shift algorithms

Table 3 gives the results showing the differences between
the diamond and the sparse diamond and multiple-shift
diamonds for different images with different window sizes.
The errors are the average intensity differences across the
whole image. Larger window sizes seem to give smaller
errors. The errors are also depend on the contents of the
image. Random image tends to generate larger errors.
Smooth or low variation images usually gives smaller
errors.

8.3. Running times

The speed of the algorithms were tested on a 1.7 GHz
Pentium 4 PC running Linux. The implementation lan-
guage is C. The programs for each algorithm were run
for several hundred times and the average running time is
obtained. The typical running time for the fast algorithms
on a 1024 · 1024 image is in the order of 1 s. Table 4 gives
some of the typical running times of different algorithms on
different size of windows. The second column gives the run-
ning times for the local mean calculation in a diamond win-
dow using direct implementation. The running time is in
accordance with the computation cost of 2r2 + 2r, apart
from that of the very small radius size due to implementa-
tion overheads. The last three columns clearly show that
the computation costs of the EU, TG, and GnE algorithms
are invariant to window sizes. The slight reduction of com-
putation time with the increase of window size is due to the
boundary effect. That is a smaller number of pixels need to
be processed if a larger window is used. The boundary pix-
els where the local window does not fit into the image can
be processed by enlarging or padding the input image using
mirror reflection at the image boundaries. One can also cal-
culate the local window mean values in this case using
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direct averaging of those pixels that lie within the input
image. Although the computation costs for the EU algo-
rithm is one more than that of the TG algorithm as shown
in Table 1, the memory storage and the number of runs
going through the image are different. Therefore we can
see the different running times for the EU and TG algo-
rithms as shown in the third and fourth columns of Table
4.

It should be mentioned that the proposed algorithms
have more memory requirements compared with direct
implementations, as shown in Table 5. The window size
does not affect the memory usage of the algorithms. Direct
implementation requires the least memory usage. Among
the three algorithms of EU, TG, and GnE, the EU algo-
rithm requires the least memory usage. The EU algorithm
is also the fastest among these three algorithms. The extra
memory requirements are for the storage of the different
line directions of local sums. For most of the diamond
and hexagonal windows, two temporary images are
required for storing the linear local sums. This should be
an issue to consider when carrying out hardware imple-
mentation of such algorithms.

Schutte and van Kempen (1997) presented three meth-
ods based on transposing the image to improve the data
cache usage for separable image processing algorithms on
general purpose workstations. In their case, the processing
was along the image rows or columns or slices for 3D
images. In our case, almost all the processings are along
Table 5
Memory usages (heap peak in Mb) of different algorithms with different
window sizes

Window sizes (r) Drct EU TG GnE

4 2.097 10.498 18.894 14.696
10 2.097 10.498 18.894 14.696

Image size is 1024 · 1024.

(a) (b)

Fig. 18. Diamond shapes after rotation transformation so that the black
and the white grids lie along the image row and column directions.
lines which are not aligned with image rows or columns.
This makes it difficult to use Schutte and van Kempen�s
method to improve cache use. For diamond window oper-
ations, it may be possible to rotate the image so that the
original diamond window becomes two different sized
squares which are aligned with image row and columns
as illustrated in Fig. 18. The diamond window becomes
two interleaving squared windows. But overhead is
involved for such transformations. The size of the trans-
formed image becomes larger and there are undefined
values around the boundaries of the transformed image.

8.4. Translation-invariant issue

To achieve translation-invariant operation for general
discrete lines, periodic lines can be used rather than Bresen-
ham lines (Soille et al., 1996; Jones and Soille, 1996; Glas-
bey and Jones, 1997; Soille and Talbot, 2001). For edges of
polygonal windows, one needs to make sure that the edges
can be represented as periodic lines (Glasbey and Jones,
1997). But this can be restrictive for general polygonal
shapes. Glasbey and Jones (1997) suggested, in this case,
to use edges that are separable into cascades of two orthog-
onal periodic lines. Soille and Talbot (2001) presented algo-
rithms for translation-invariant morphological filtering.

9. Conclusions

We have developed several fast moving average algo-
rithms for several types of operations using diamond
shaped window. The algorithms require seven or eight or
nine additions and subtractions for each pixel on the
image. A fast sparse algorithm only needs four additions
and subtraction for each pixel of the image. The algorithms
are also extended for a variety of other shaped diamond
windows, such as long diamond, skewed diamond, and
lozenge shapes. Similar algorithms are also developed for
hexagon shaped windows. The computation for hexagon
window only needs eight additions and subtractions for
each pixel. Fast algorithms for general polygonal shaped
windows operation are also developed. The computation
cost of all these algorithms are independent of the window
size.
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