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Abstract— This paper presents fast algorithms for similarity measure,
stereo matching, panoramic stereo matching, and image motion esti-
mation. The disparity map for the stereo images is found in the 3D
correlation coefficient volume by obtaining the global 3D maximum-
surface by using our two-stage dynamic programming (TSDP) technique.
Fast panoramic stereo matching is carried out using a cylindrical
maximum surface technique. Optical flow or image motion estimation
is obtained using 3D shortest path techniques. A variety of synthetic and
real images have been tested, and good results have been obtained.
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I. I NTRODUCTION

The correspondence problem in stereo vision and image motion
concerns the matching of points or other kinds of primitives such
as edges and regions in two or more images such that the matched
image points are the projections of the same point in the scene. The
disparity map or motion field obtained from the matching stage may
then be used to compute the 3D positions of the scene points given the
imaging geometry. Matching techniques can be divided broadly into
area-based and feature-based image matching, or a combination of
them. Other types of stereo matching methods such as pixel-based [4],
diffusion-based [5], wavelet-based [6], phase-based [7], and filter-
based [8] have also been developed. There are also several types of
methods for estimating image motion or optical flow [9].

In this paper we will present techniques for fast stereo matching,
fast panoramic stereo matching and image motion estimation. The
rest of the paper is organised as follows: Section II proposes our
method for fast calculation of similarity measure. Section III presents
our method for fast stereo matching by finding the maximum-surface
in the 3D correlation volume using the TSDP technique. Section IV
presents algorithms for fast panoramic stereo matching. Section V
gives our method for fast motion estimation. Section VI discusses
the reliability and computation speed issues of our algorithms.
Section VII gives concluding remarks.

II. FAST SIMILARITY MEASURES

Similarity or dissimilarity is the guiding principle for solving
the stereo matching or motion correspondence problem. Different
similarity measures have been used in the literature for matching,
and their performance and computation costs vary [10], [11]. The
most commonly used similarity measure is the cross correlation
coefficient especially for stereo matching. But direct calculation of
ZNCC is computationally expensive. Faugeraset al [12] developed
a recursive technique to calculate the correlation coefficients which
are invariant to the correlation window size. Sun [13], [14] used
box-filtering technique for fast cross correlation. The following
subsections describe methods for achieving fast correlation on the
whole image and our technique of using rectangular subregioning
for fast similarity measure calculation.

* This paper is based on the following three published or about to be
published articles: [1], [2], [3].

A. Fast Cross-Correlation on the Whole Images: Review

To achieve fast cross-correlation calculation, one needs to have
fast ways to obtain the mean and variance of a window and cross
covariance values of two local windows in two input images. Fast
calculation of local mean and variances can be achieved using
the box-filtering technique. Cross-covariance of two images can be
obtained using only a few multiplications by exploiting techniques
similar to the fast calculation for the mean and variance by using
box-filtering.

The correlation of two windows in the two images is performed
along the same horizontal scan line. For any point in the left image,
if the search window is assumed to be within [�w;+w] in the right
image, then the value of disparityd varies from�w to +w. In
an algorithm for fast correlation calculation, one first fixes on one
particular d for all the points in the left image and calculates the
local cross correlation between the whole left image and the whole
shifted right image of the amountd using box-filtering technique.
After this, for every point on the left image we have a local cross
correlation value for the shift ofd. Then we increase the number ofd
by 1, and repeat the process of correlation calculation until the value
of d has gone through [�w;+w]. For eachd, a plane of correlation
coefficients is produced. Putting all of these planes together we have
a 3D correlation volume. The size of the volume depends upon the
image row and column numbersM;N and the maximum disparity
search rangeD(=2w+1) as shown in Figure 1. The complexity of the
algorithm isO(MND). The storage space needed for the correlation
coefficients is in the order of4MND bytes if float data type is used.
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Fig. 1. An illustration of the 3D correlation coefficient volume obtained after
using the fast correlation method. The grey plane in the middle of the volume
corresponds to the coefficients whend = 0. The size of the volume isMND.

B. Rectangular Subregioning (RSR)

Rather than work with the whole image during the fast image
correlation stage as described in the previous subsection, we could
work with subimages to speed up the correlation calculation further.
If the input image is divided intoR subimages or rectangular
subregions, the computation complexity will be

PR�1
i=0 (MiNiDi),

whereMi, Ni are the row and column numbers for theith subimage
or region, andDi is the disparity search range over this subimage.
We call the process of segmenting the input images into rectangular
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subimages as rectangular subregioning (RSR). Because the disparity
search rangeDi is obtained in a much smaller region (MiNi), Di

is expected to be smaller thanD, which is obtained for the whole
image. Even when it is not much smaller, the size of this region
(MiNi) is much smaller than the input image. It is anticipated thatPR�1

i=0 (MiNiDi) will be smaller thanMND, especially when the
disparity changes a lot within the whole image.

C. Fast Similarity Measure in 2D Search

It is possible to compute the cross correlation using only a few
multiplications by exploiting techniques similar to those described in
Section II-A with search in both x- and y- directions. For each pair
of dx anddy, a plane of correlation coefficients is produced.dx and
dy can be varied over [�wx, +wx] and [�wy, +wy] to produce
a correlation volume of sizeMNDxDy. The complexity of our
algorithm isO(MNDxDy). It is independent of the local window
sizes. The storage space needed for the correlation coefficients is in
the order ofMNDxDy floating points. If SAD or SSD is used, the
data type could be integer or short integer rather than floating points.

III. STEREOMATCHING USING MAXIMUM -SURFACE

From the previous section, we have obtained a 3D cross correlation
coefficient volume as shown in Figure 1 using fast cross correlation
working on rectangular subregions for stereo images.

A. Maximum-Surface in the Volume

In this section, we will approach the issue of obtaining disparity
map from the 3D correlation coefficient volume using dynamic
programming techniques, which is computationally efficient. We
developed a method to obtain a maximum-surface from a 3D volume
using a two-stage dynamic programming (TSDP) technique. This
maximum-surface cuts through the 3D volume from the top to the
bottom as illustrated in Figure 2.
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Fig. 2. The illustration of the 3D maximum-surface which give the maximum
accumulation of values in the 3D cross correlation coefficient volume.

Now we describe our algorithm for the maximum-surface ex-
traction in a 3D volume of sizeMND using our fast TSDP
method. The first stage of the algorithm is to obtain an accumulated
intermediate 3D volume in the vertical direction for each vertical
j slice. AssumeC(i; j; d) is the correlation coefficient value in the
input 3D volume at position(i; j; d), where 06i<M , 06j<N , and
06d<D. We create an intermediate arrayY (i; j; d) which contains
the accumulated values of the maximum cross correlation coefficients
for each verticalj slice of the same 3D volume using dynamic
programming techniques say from top to bottom, i.e. wheni changes
from 0 to M -1. For those values in the top horizontal slice of the
volume, i.e. wheni = 0,

Y (0; j; d) = C(0; j; d) (1)

i.e. the top (horizontal) slice ofY is a copy of the top slice ofC.
For the remaining horizontal slices of the volume, theY values at
each position is obtained by using the following recursion which is
a typical dynamic programming formula:

Y (i; j; d) = C(i; j; d) + max
t:jtj�p

Y (i� 1; j; d+ t) (2)

where p determines the number of local values that need to be
checked.
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Fig. 3. Obtaining theY (i; j; d) volume. (a) shows the 3D volumeY with
a vertical slice in grey; (b) illustrates the positions of theY values at each
iteration.

After the recursion of the first stage dynamic programming de-
scribed in the previous paragraph, we now move to a second stage of
the TSDP algorithm using volumeY to obtain the disparity map for
the input stereo images. In this stage, we work in the horizontal
direction. Starting from the bottom of the 3D volumeY where
maximum values have been accumulated, we select the 2D horizontal
slice with i = M -1, i.e. the bottom slice for disparity estimation.
From this 2D matrix of sizeND, a shortest-path from left to right
is obtained using dynamic programming techniques. The sum of
the values along this path gives the maximum value which is also
the maximum summation value along the whole 3D surface. This
obtained path is related to the disparities for the last or bottom row
of the input image. The distance of each point along this path to the
middle line is the obtained disparity for the samex- positioned point
of the input image.

We then move from the bottom slice ofY upwards. When
calculating the disparity for row numberi-1, we use the result
obtained for row numberi. We now select the 2D horizontal slice
numberi-1 of the 3D volumeY , and mask out those values which
are more thanp position away from the shortest-path obtained from
row numberi. Then a new shortest-path is obtained in this 2D matrix
from left to right. This process of obtaining shortest-path is repeated
until the shortest-path for the first row of the image is obtained.

Putting all the shortest-paths for each of the scan line together
forms a 3D surface within the 3D volume ofY . Because successive
shortest-path for each scan line is obtained in the neighbourhood of
the previous path position, the 3D maximum-surface technique gives
more consistent disparities. The complexity of the TSDP algorithm
is linear with respect to the size of the 3D volume, i.e.O(MND).

B. Algorithm Steps

The steps of our algorithm, which uses the combination of RSR
and TSDP, for fast stereo matching in a coarse-to-fine scheme are:

1) Build image pyramids withP levels (from 0 toP � 1), from
the original left and right images.

2) Initialize the disparity map as zero for levelk = P � 1 and
start stereo matching at this level.
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3) Perform stereo matching using the method described in Sec-
tions II-III which includes:

a) Segment images into rectangular subregions based on the
current disparity map;

b) Perform fast zero mean normalised correlation to obtain
the correlation coefficients for each subregions and build
a 3D correlation coefficient volume for the whole image;

c) Use the two-stage dynamic programming technique to
find the 3D maximum-surface, which will then give the
disparity map as described in Section III.

4) If k 6= 0, propagate the disparity map to the next level in the
pyramid using bilinear interpolation, setk = k � 1 and then
go back to Step 3; ifk = 0, go to Step 5.

5) Display disparity map.

C. Experimental Results

This section shows some of the results obtained using our
RSR+TSDP algorithm described earlier. The input left and right
images are assumed to be rectified epipolar images. Implementations
of the Roy’s [15], Cox’s [16] and Sun’s [13] methods are used for
comparison. The codes for Roy’s and Cox’s methods are downloaded
from their web pages.

Figures 4-5 show some results using real images. The input
Pentagon images are shown in Figure 4(a,b). The matching results
for our method, Roy’s, Cox’s and Sun’97 methods are given in
Figure 4(c,d,e,f). The input Fruit scene images are shown in Fig-
ure 5(a,b). The matching results for our method, Roy’s, Cox’s and
Sun’97 methods are given in Figure 5(c,d,e,f). From the results shown
in Figures 4 and 5, it can be seen that our RSR+TSDP method gives
more consistent results than the other three methods. Many other
types of real images have also been tested, and good results have
been obtained.

The typical running time for the algorithm on a 256�256 image
with about 30 pixels disparity is in the order of several hundred
milliseconds with a 500MHz Pentium III running Linux. Table I gives
some of the typical running times of the algorithm on different sizes
of images with different disparities using whole image correlation
and the RSR methods. The time shown for “User time1” is obtained
without using the RSR method, while the time shown for “User
time2” is obtained by using the RSR method. It can be seen that
the time spent by the algorithm using RSR method is almost half of
the time without using the RSR method.

Table II gives some of the typical running times of the 2D matrix
and 3D maximum-surface algorithms on different size of images. The
computation time for the 3D surface method is only slightly longer
than that of the 2D path method. Table III shows the computation
times for Roy, Cox and our algorithms on three pair of images.
Roy’s algorithm takes much longer to finish compared with other two
algorithms. Our method is also much quicker than Cox’s method.

TABLE III
Running times of different algorithms.

Image Image Disp. Roy’s Cox’s Our
name size range method method method
RDS 300�300 10 300.63s 1.44s 0.45s

pm 512�480 25 374.83s 4.28s 1.75s
pentagon 512�512 25 462.47s 5.43s 1.62s

D. Fast Stereo Matching Web Demo

Our fast stereo matching algorithm web demo is at:
http://extra.cmis.csiro.au/IA/changs/stereo/

IV. FAST PANORAMIC STEREOMATCHING USING CYLINDRICAL

MAXIMUM SURFACES1

Panoramic images are becoming increasingly popular in image-
based virtual environment representations and digital photography.
Panoramic stereo images are also becoming available for 3D appli-
cations. The panoramic stereo images that we are interested in are
the 360-degree stereo images on a cylindrical surface. Panoramic
stereo images can be obtained by a number of methods. They can be
generated by mosaicking images from a rotating camera [18], [19],
or by using special imaging optics [20], [21], [22], [23].

Some matching methods for panoramic stereo images use standard
window based correlation search [21], [24], [19]. Because of the
special wrap-around property for the panoramic stereo images, special
care needs to be taken during the stereo matching process. Zheng
and Tsuji used circular dynamic programming for matching vertical
features in panoramic images [25]. Liet al used tensor voting
techniques for matching multiperspective panoramas [26].

Here we propose to use cylindrical maximum surface techniques
for carrying out dense panoramic stereo matching considering the
continuity of neighboring epipolar scanlines. We can use the tech-
niques described in Section II-A for fast correlation calculation. As
a result of the fast similarity measure, we obtain a 3D correlation
volume. The size of the volume depends upon the image row and
column numbersM;N and the maximum disparity search rangeD as
shown in Fig. 6(a). As the inputs are panoramic stereo images, the 3D
correlation coefficient volume obtained actually forms a cylindrical
volume as shown in Fig. 6(b). We will find a maximum surface within
this cylindrical volume for disparity estimation.
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Fig. 6. An illustration of the 3D correlation coefficient volume for panoramic
stereo images obtained after using the fast correlation method. (a) shows the
3D volume; and (b) shows the same volume in cylindrical shape.

A. Circular Shortest Path in 2D Matrix

In panoramic stereo matching, a horizontal slice of the cylindrical
volume as shown in Fig. 7 has the property that the left most and
the right most columns are connected. This 2D slice can also be
shown in the format of a cylindrical surface as in [27]. In traditional
stereo matching, dynamic programming (DP) techniques have been
used to obtain shortest paths to estimate disparities [28], [13], [29].

1This section is a joint work with Professor Shmuel Peleg at School of
Computer Science and Engineering, The Hebrew University, Israel [2].
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(a) pentagonR (b) pentagonL (c) RSR+TSDP

(d) Roy’s method (e) Cox’s method (f) Sun’97

Fig. 4. Pentagon stereo. (a) and (b) are the right and left input images. (c) Results obtained using our method (RSR+TSDP). (d) Results obtained using
Roy’s method. (e) Results obtained using Cox’s method. (f) Results obtained using the method described in [13]. (Images (a,b) courtesy of Bill Hoff atthe
Univ. of Illinois [17]).

(a) fruitR (b) fruitL (c) RSR+TSDP

(d) Roy’s method (e) Cox’s method (f) Sun’97

Fig. 5. Fruit stereo. (a) and (b) are the right and left input images. (c) Results obtained using our method (RSR+TSDP). (d) Results obtained using Roy’s
method. (e) Results obtained using Cox’s method. (f) Results obtained using the method described in [13]. (Images (a,b) courtesy of Bill Hoff at the University
of Illinois [17]).
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TABLE I
Running times of the whole image correlation and the RSR algorithms on different images. The dynamic programming stage of this test runs on 2D matrix.

The size of the correlation window is 9�9. The reduction ratior used in the pyramid generation process is 2.

Image Image Pyramid Search Disparity User User
name size levels range range time1 time2
ball 256�256 3 [-4,4] [-19,7] 0.53s 0.32s

pentagon 512�512 3 [-2,2] [-10,10] 2.42s 1.39s
circuit 512�512 3 [-5,5] [-21,23] 3.36s 1.59s

flat 1000�1000 4 [-3,3] [-31,23] 16.86s 7.51s

TABLE II
Running times of our algorithms on different images. The size of the correlation window is 9�9. The reduction ratior used in the pyramid generation

process is 2. Both of these algorithms use RSR.

Image Image Pyramid Search Disparity Method Method
name size levels range range 2D path 3D surface
ball 256�256 3 [-4,4] [-19,7] 0.32s 0.37s

pentagon 512�512 3 [-2,2] [-10,10] 1.39s 1.50s
circuit 512�512 3 [-5,5] [-21,23] 1.59s 1.82s

flat 1000�1000 4 [-3,3] [-31,23] 7.51s 7.53s

For panoramic stereo matching, we can use circular shortest path
(CSP) extraction technique to obtain a CSP in each 2D correlation
matrix (sizedND as shown in Fig. 7) so that the starting and ending
positions of this path are connected.

N
D

D

Fig. 7. One slice of the 3D cylindrical volume shown in Fig. 6.

Five algorithms (MSA: multiple search algorithm; IPA: image
patching algorithm; MBTA: multiple backtracking algorithm; Com-
bination algorithm of IPA and MBTA; and Approximate algorithm)
in [27] and one (BBCSP: circular shortest path by branch and bound)
in [30] have been developed for CSP extraction on regular grids or
images when the left and the right columns of the grid are neighbours.

One can simply use the CSP extraction algorithm mentioned
earlier to obtain a CSP for each slice of the 3D cylindrical volume
independently for the disparity estimation of the panoramic stereo
images. However this approach does not take information from
neighbouring scanlines into account (apart from the windowing effect
during correlation). In the following subsection, we use this CSP
extraction technique to obtain a 3D surface in the cylindrical volume
for panoramic stereo matching. We intend to obtain a maximum 3D
cylindrical surface rather than a number of independent CSPs.

B. Maximum Surface in a Cylindrical Volume

In this subsection, we will approach the issue of obtaining the
panoramic stereo disparity map from the cylindrical shaped 3D
correlation coefficient volume using a CSP technique, which is
computationally efficient. A cylindrical maximum surface which cuts
through the cylindrical volume from the top to the bottom as shown
in Fig. 8 is obtained in two steps. The cylindrical maximum surface

gives the maximum summation of the correlation coefficients along
the surface inside the cylindrical volume.

The process of obtaining such surface is similar to that for
obtaining the 3D surface described in Section III except replacing
shortest path with circular shortest path.

i

j

Fig. 8. The cylindrical maximum surface which give the maximum
accumulation of cross correlation values in the cylindrical volume. The vertical
rectangle in the figure shows one vertical slice at positionj of the cylindrical
volume.

Putting all the CSPs obtained for each of the scanline together form
a 3D cylindrical surface within the 3D volume. Because successive
CSP for each scanline is obtained in the neighbourhood of the
previous path position, the cylindrical maximum surface gives more
consistent disparities. The result of obtaining this cylindrical surface
is that the summation of the correlation values on this surface is
maximum.

C. Experimental Results

This section shows some of the results obtained using our method
described in previous sections. The input left and right panoramic
stereo images are assumed to be rectified epipolar images.

Figure 9 shows the different results obtained for a portion of a
panoramic stereo images by using just the CSP algorithm or the
cylindrical maximum surface technique. Figure 9(a) is the result
obtained using the CSP algorithm for each horizontal slice of the
3D correlation volume independently. Figure 9(b) gives the result
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obtained using the cylindrical maximum surface technique. Note that
there is a white streaking around the top left region and there is a
dark streaking around the bottom right region in Fig. 9(a).

(a) (b)

Fig. 9. Different disparity results obtained for a portion of the panoramic
stereo images. (a) Disparity obtained using CSP for each horizontal slice of the
3D correlation volume; (b) Disparity obtained using the cylindrical maximum
surface technique.

Figure 10 gives the results obtained by using our methods described
in previous sections. The first two images are the left and the right
input panoramic stereo images. The third image is the disparity map
obtained. The running time for the algorithm on a 1324�120 image
is about 0.34 seconds on a 1.7GHz Linux PC. We are showing
the disparity for every points of the stereo images. The work by
Li et al [26] for depth estimation from multiperspective panoramas
by the use of tensor voting techniques seems to give good results.
Their algorithm, however, takes about 60 minutes on a Pentium III
550MHz.

V. FAST MOTION ESTIMATION

Optical flow or image motion is the displacement of each image
pixel in an image sequence. Image motion estimation is a fundamental
issue in low-level vision and is used in many applications such
as robot navigation, object tracking, image coding, and structure
reconstruction. There are several types of methods for estimating
image motion or optical flow [9]. These methods can be divided
into correlation-based [31], [32], [33], [34], energy-based [35], phase-
based [36], gradient-based [37], [38], [39], [40] methods, and orthog-
onal dynamic programming method [41]. In this section we develope
algorithms for image motion estimation by using fast correlation and
dynamic programming techniques.

A. Correlation Volume

The result of the correlation calculation described in Section II-C is
a volume containing the correlation coefficients as shown in Fig. 11.
The size of the volume depends upon the image sizeMN and the
motion search rangesDx andDy. Each pixel in the first image has
DxDy correlation coefficients in the corresponding search region in
the second image. These coefficients are stored in a 1D vector in
the 3D volume as shown in Fig. 11. This vector represents the 2D
search region shown in the right hand side of the same figure. There
areN such 2D search regions containing the correlation coefficients
in each horizontal scanline of the input image. These 2D regions can
be stacked together to produce a 3D volume of correlation coefficients
with dimensionsDxDyN for each scanline of the image as shown in
Fig. 12. This correlation volume will be used to obtain motion vectors
for this scanline using 3D shortest path method to be described in
Section V-B.

Rows
Image

(M)

Image Columns (N)

Dx

Dy

Search Range

Fig. 11. An illustration of the correlation volume obtained after using our
fast correlation method. The number of correlation planes equals the size of
the search regionDxDy.

Dy

Dx

Fig. 12. Correlation volume for each scanline. Each plane in the volume
contains the correlation coefficient values within a search region. There are
N such planes for each scanline.

B. Shortest Path in 3D Using Dynamic Programming

We propose a method which uses a 3D shortest path through the 3D
correlation volume for each scanline of the input image to produce a
consistent set of motion vectors. This volume is one horizontal slice
of the correlation volume shown in Fig. 11. The position of the path
indicates the best motion vector for this scanline. Because the path is
continuous, the motion vectors obtained for neighbouring pixels are
more consistent with each other.

Now we describe our algorithm for the shortest path extraction in
a 3D volume using efficient dynamic programming techniques. For
0 6 p < Dx, 0 6 q < Dy and 0 6 k < N , let C(p; q; k) be
the cost (or the correlation coefficient value) of the(p; q; k)th value
in the 3D volume of sizeDxDyN . Array Y (p; q; k) contains the
accumulated values andK(p; q; k) has the position which produces
the local maximum value. Whenk = 0,

Y (p; q; 0) = C(p; q; 0) (3)

i.e. the first plane ofY is a copy of the first plane ofC. For the
remaining planes (kth plane) of the volume, theY values at each
position is obtained using the following recursion:

Y (p; q; k) = C(p; q; k) + max
s;t:jsj61;jtj61

Y (p+ s; q + t; k � 1) (4)

The values ofs; t which achieves the maximum in Eq. (4) during
each iteration is stored inK.

K(p; q; k) = argmaxs;t:jsj61;jtj61Y (p+ s; q + t; k � 1) (5)

The values stored in volumeK are used to backtrack along the best
path from the maximum value in the last plane ofY . After the Y
andK volumes have been obtained, we can start the backtracking
process to obtain the 3D shortest path. One 3D path is extracted for
each horizontal scanline of the input image.

C. Sub-pixel Accuracy

The result of shortest path extraction produces motion estimation
up to pixel level accuracy. Sub-pixel accuracy can be obtained by
fitting a second degree surface to the correlation coefficients in the
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Fig. 10. The first and second images are the left and right input images [20]. The third image gives the matching results using our method described in this
paper.

neighbourhood of the motion vector and the extrema of the surface
can be obtained analytically. The general form of the second degree
surface is:S(x; y) = A � x2 + B � xy + C � y2 + D � x + E �

y + F . The maximum can be found where the slope is zero in the
quadratic equation. The sub-pixel position can be found by solving
the following equation:�

2A � x + B � y + D = 0
B � x + 2C � y + E = 0

(6)

Solving Eq. (6) we have:�
x = (BE � 2CD)=(4AC �B2)
y = (BD � 2AE)=(4AC �B2)

(7)

When estimating the coefficientsA;B;C;D; E and F of function
S(x; y), one usually needs to solve a set of over-determined linear
equations. A quick way of obtaining the coefficients ofS(x; y) is
necessary to make sub-pixel accuracy motion estimation practical.

If the shortest path passes position(p; q) at planek of the volume,
we use the nine correlation coefficient values in the neighbourhood
of (p; q) as input. We have derived the following formula for the
calculation ofA;B;C;D;E andF using nine neighbouring values.8>>>>>>>>>>>><
>>>>>>>>>>>>:

A =(b(�;�) � 2b(�;�) + b(+;�) + b(�;�) � 2b(�;�) + b(+;�)+
b(�;+) � 2b(�;+) + b(+;+))=6

B =(b(�;�) � b(+;�) � b(�;+) + b(+;+))=4
C =(b(�;�) + b(�;�) + b(+;�) � 2b(�;�) � 2b(�;�) � 2b(+;�)+

b(�;+) + b(�;+) + b(+;+))=6
D =(�b(�;�) + b(+;�) � b(�;�) + b(+;�) � b(�;+) + b(+;+))=6
E =(�b(�;�) � b(�;�) � b(+;�) + b(�;+) + b(�;+) + b(+;+))=6
F =(�b(�;�) + 2b(�;�) � b(+;�) + 2b(�;�) + 5b(�;�) + 2b(+;�)�

b(�;+) + 2b(�;+) � b(+;+))=9
(8)

where b(�;�) = S(p � 1; q � 1); b(�;�) = S(p; q � 1); b(+;�) =
S(p + 1; q � 1); b(�;�) = S(p � 1; q); b(�;�) = S(p; q); b(+;�) =
S(p+1; q); b(�;+) = S(p�1; q+1); b(�;+) = S(p; q+1); b(+;+) =
S(p+ 1; q + 1): The b(�;�)

0s are the values of the local correlation
coefficients. One can, therefore, use Eq. (8) to obtain the coefficients
of function S(x; y), and then use Eq. (7) to calculate the sub-pixel
accuracy motion vector.

D. Algorithm Steps

The steps of our algorithm for fast image motion estimation are:

1) Performing fast ZNCC (or use SSD or SAD) to obtain the
correlation coefficients;

2) Building a 3D correlation coefficient volume for each scanline
(or each column) of the image;

3) Using dynamic programming technique to find the best path in
the 3D volume, which will then give the motion vectors;

4) Fitting the correlation values in the neighbourhood of the
motion vector obtained in the previous step to a surface to
obtain sub-pixel accuracy.

E. Experimental Results

This section shows some of the results obtained using our motion
estimation method. Comparisons with some of the commonly cited
techniques are also made. A variety of images have been tested,
including synthetic images and different types of real images.

Fig. 13 shows the results of different techniques on the image
sequence “Yosemite”. The first two images in the top row are frames
9 and 10 in the sequence. The third picture in the top row is the
correct optical flow field. The results of Fleet’s, Horn’s and Lucas’
techniques give sparse flow fields, while other techniques give dense
optical flow. The techniques producing reasonable results for the top
region of the image are Singh’s and ours.

Table IV shows the errors, flow density, number of image frames
used and the time that several techniques used for calculating the flow
field. The errors in Fleet’s, Horn’s and Lucas’ techniques are small
because they only use the reliable flow estimates. Uras’ technique and
our technique give smaller errors and our technique gives the higher
computation speed. But Uraset al’s technique does not perform well
at the top region of the image, and 15 frames of the sequence are
required. The test were run on a 85MHz Sun SPARCserver1000
running Solaris 2.5. All the programs apart from the author’s were
obtained from the ftp site atftp://csd.uwo.ca/pub/vision .
The typical running time for our algorithm on a 256�256 image is
in the order of seconds.

TABLE IV
RESULTS FOR THE IMAGE SEQUENCEyos.

Av. Standard Frms User
Technique error deviation Density used time
Anandan 16.37 13.46 100.00% 2 849.79s
Fleet 5.28 14.33 30.64% 15 426.13s
Horn 5.48 11.30 32.88% 15 29.62s
Lucas 4.48 12.16 39.78% 15 32.94s
Nagel 12.70 16.68 100.00% 15 205.50s
Quenot 9.93 16.16 100.00% 2 182.63s
Singh 12.09 15.86 100.00% 3 339.36s
Uras 8.92 15.61 100.00% 15 17.58s
Sun 9.21 16.16 100.00% 2 14.35s
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Anandan Fleet Horn

Lucas Nagel Quenot

Singh Uras Sun

Fig. 13. The optical flow results of different techniques on theYosemite sequence. The first two images in the first row are the frames 9 and 10 in the
sequence, and the third picture in the first row shows the true optical flow. The name of each technique is given below the corresponding picture.

Four real image sequences have also been tested, and good results
have been obtained. Fig. 14 shows the results of several techniques
on the four real image sequences: SRI Trees, NASA Sequence, Rubik
Cube and Hamburg Taxi provided in [9].

F. Fast Image Motion Web Demo

The web demo address is at:
http://extra.cmis.csiro.au/IA/changs/motion/

VI. D ISCUSSION ONRELIABILITY AND COMPUTATIONAL SPEED

The reliable results of our algorithm are achieved by applying the
combination of the following techniques: (1) Coarse-to-fine strategy
is used (for stereo matching). (2) The zero mean normalized cross
correlation similarity measure is used, which is independent of
differences in brightness and contrast. (3) The correlation coefficient
value is used as input to the dynamic programming stage rather
than just using the intensity value of the input images. (4) Dynamic

programming technique is used to find a 3D maximum-surface or 3D
shortest path in the correlation volume.

The fast computational speed of our algorithm is achieved with the
following aspects: (1) Fast zero mean normalized cross correlation
is used. (2) We have used a rectangular subregioning technique for
fast computation of correlation coefficients (for stereo matching).
(3) Apart from having the advantages of increasing the reliability,
the coarse-to-fine approach is also faster than one without using it.
(4) A two-stage dynamic programming technique is used to find a
maximum-surface in the 3D correlation volume. (5) A simple formula
is used for sub-pixel motion estimation.

VII. C ONCLUSIONS

We have developed a fast and reliable stereo matching method
using rectangular subregioning, fast correlation and 3D maximum-
surface techniques in the coarse-to-fine framework. The 3D
maximum-surface is obtained from the 3D correlation volume using
a two-stage dynamic programming technique. A similar technique
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Fig. 14. The results of different techniques on four of the commonly used images sequences. (Images courtesy of Barron, Fleet and Beauchemin [9].)

was developed for fast panoramic stereo matching using cylindrical
maximum surface techniques. We also developed an image motion
estimation method using fast correlation and 3D shortest path tech-
niques. All the algorithms were shown to be fast and reliable by
testing on several different types of real images.
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