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Abstract— This paper presents fast algorithms for similarity measure, A. Fast Cross-Correlation on the Whole Images: Review

f;z{ﬁ)?].ﬂeﬁghggbaeft‘;mrﬁ;)'cfosrtet;? ngé%hmégzgdis'”}ﬁgﬁdr?r?t'&l e;é" To achieve fast_ cross-correlation ca_lculation, one needs to have
correlation coefficient volume by obtaining the global 3D maximum- fast ways to obtain the mean and variance of a window and cross
surface by using our two-stage dynamic programming (TSDP) technique. covariance values of two local windows in two input images. Fast
Fast panoramic stereo matching is carried out using a cylindrical calculation of local mean and variances can be achieved using

maximum surface technique. Optical flow or image motion estimation filtari ; _ ; ;
is obtained using 3D shortest path techniques. A variety of synthetic and the box-filtering technique. Cross-covariance of two images can be

real images have been tested, and good results have been obtained. ~ obtained using only a few multiplications by exploiting techniques

Keywords: Rectangular subregioning (RSR), 3D Maximum-Surface, Similar to the fast calculation for the mean and variance by using
Two-stage dynamic programming (TSDP), Fast panoramic stereo match- box-filtering.
ing,_CircuIar_ shortest path, Cylindrical maximum surface, Motion esti- The correlation of two windows in the two images is performed
mation, Optical flow, 3D shortest path. . . L .

along the same horizontal scan line. For any point in the left image,
if the search window is assumed to be withirdg, +w] in the right
I. INTRODUCTION image, then the value of disparity varies from —w to 4+w. In

The correspondence problem in stereo vision and image moti@h algorithm for fast correlation calculation, one first fixes on one
concerns the matching of points or other kinds of primitives sudprticulard for all the points in the left image and calculates the
as edges and regions in two or more images such that the matcmgﬂ cross correlation between the whole left image and the whole
image points are the projections of the same point in the scene. Théfted right image of the amount using box-filtering technique.
disparity map or motion field obtained from the matching stage méyfter this, for every point on the left image we have a local cross
then be used to compute the 3D positions of the scene points givengrgelation value for the shift of. Then we increase the numberdf
imaging geometry. Matching techniques can be divided broadly infy 1, and repeat the process of correlation calculation until the value
area-based and feature-based image matching, or a combinatioRfaf has gone throughHw, +w]. For eachd, a plane of correlation
them. Other types of stereo matching methods such as pixel-basedqagfficients is produced. Putting all of these planes together we have
diffusion-based [5], wavelet-based [6], phase-based [7], and filté&-3D correlation volume. The size of the volume depends upon the
based [8] have also been developed. There are also several typd§1age row and column numbet®/, N and the maximum disparity
methods for estimating image motion or optical flow [9]. search rang®(=2w+1) as shown in Figure 1. The complexity of the

In this paper we will present techniques for fast stereo matchirggorithm isO(M N D). The storage space needed for the correlation
fast panoramic stereo matching and image motion estimation. T¢Refficients is in the order of AN D bytes if float data type is used.
rest of the paper is organised as follows: Section Il proposes our
method for fast calculation of similarity measure. Section Il presents !
our method for fast stereo matching by finding the maximum-surface !

in the 3D correlation volume using the TSDP technique. Section IV
presents algorithms for fast panoramic stereo matching. Section V
gives our method for fast motion estimation. Section VI discusses image
the reliability and computation speed issues of our algorithms. Rows
Section VII gives concluding remarks. (M) |
A
Il. FAST SIMILARITY MEASURES ;;)@Q?’@
Similarity or dissimilarity is the guiding principle for solving Image Columns  (N)

the stereo matching or motion correspondence problem. D'ﬁerﬁ"—%. 1. Anillustration of the 3D correlation coefficient volume obtained after

similarity measures have been used in the literature for matchinging the fast correlation method. The grey plane in the middle of the volume
and their performance and computation costs vary [10], [11]. Therresponds to the coefficients whér 0. The size of the volume &/ N D.

most commonly used similarity measure is the cross correlation
coefficient especially for stereo matching. But direct calculation of
ZNCC is computationally expensive. Faugerdsal [12] developed B. Rectangular Subregioning (RSR)

a recursive technique to calculate the correlation coefficients Wh'ChRather than work with the whole image during the fast image

Ere ::R/ar_lanttto hth_e cor][elatflont window S'Zel' ts_un [_T_rs]]' [fldlfl] u,segorrelation stage as described in the previous subsection, we could
ox-liitering - technique for fast cross corretation. € ToloWING ok with subimages to speed up the correlation calculation further.

subsections describe methods for achieving fast correlation on Wethe input image is divided intoR subimages or rectangular

whole image and our technique of using rectangular subregioniggbregions the computation complexity will @R_I(MiNiDi)
for fast similarity measure calculation. ’ =0 '

whereM;, N; are the row and column numbers for tiie subimage

* This paper is based on the following three published or about to ¥ region, andD; is the disparity search range over this subimage.
published articles: [1], [2], [3]. We call the process of segmenting the input images into rectangular



subimages as rectangular subregioning (RSR). Because the dispastythe top (horizontal) slice oY is a copy of the top slice of.
search rangeD; is obtained in a much smaller regiod{N;), D; For the remaining horizontal slices of the volume, fievalues at

is expected to be smaller than, which is obtained for the whole each position is obtained by using the following recursion which is
image. Even when it is not much smaller, the size of this regiamtypical dynamic programming formula:

(M;N;) is much smaller than the input image. It is anticipated that
Zfz_Ol(MiNiDi) will be smaller thanM N D, especially when the
disparity changes a lot within the whole image.

HLIsp

where p determines the number of local values that need to be

checked.

C. Fast Similarity Measure in 2D Search

It is possible to compute the cross correlation using only a few Y(i-1j.d-1)
multiplications by exploiting techniques similar to those described in —Y(-1j.d)
Section II-A with search in both x- and y- directions. For each pair V(L d+1)
of d, andd,, a plane of correlation coefficients is produced.and J
d, can be varied over{w,, +w.] and [wy, +w,] to produce YGid)
a correlation volume of size/ ND,D,. The complexity of our ?"I) P [Cid)]
algorithm isO(M N D, D,). It is independent of the local window

sizes. The storage space needed for the correlation coefficients is in S <
the order of M ND, D, floating points. If SAD or SSD is used, the / © Q®
data type could be integer or short integer rather than floating points. N (J( ) )
a
I1l. STEREOMATCHING USING MAXIMUM -SURFACE Fig. 3. Obtaining theY'(¢, j, d) volume. (a) shows the 3D volunié with

. . . a vertical slice in grey; (b) illustrates the positions of thevalues at each
From the previous section, we have obtained a 3D cross correlati@iation.

coefficient volume as shown in Figure 1 using fast cross correlation

working on rectangular subregions for stereo images. After the recursion of the first stage dynamic programming de-

scribed in the previous paragraph, we now move to a second stage of
A. Maximum-Surface in the Volume the TSDP algorithm using volumg to obtain the disparity map for

In this section, we will approach the issue of obtaining disparitgpe in_put sterep images. In this stage, we work in the horizontal
map from the 3D correlation coefficient volume using dynamififéction. Starting from the bottom of the 3D volumié where
programming techniques, which is computationally efficient. wdaximum values have been accumulated, we select the 2D horizontal
developed a method to obtain a maximum-surface from a 3D volurice With @ = -1, i.e. the bottom slice for disparity estimation.
using a two-stage dynamic programming (TSDP) technique. Trﬁgom this 2D matrix of sizeVD, a shortest-path from left to right

maximum-surface cuts through the 3D volume from the top to te obtained using d_ynamic programming_ techniques. The sum of
bottom as illustrated in Figure 2. the values along this path gives the maximum value which is also

the maximum summation value along the whole 3D surface. This
obtained path is related to the disparities for the last or bottom row
of the input image. The distance of each point along this path to the
middle line is the obtained disparity for the samepositioned point
of the input image.
We then move from the bottom slice df upwards. When
M L calculating the disparity for row numberl, we use the result
0 Lo obtained for row numbef. We now select the 2D horizontal slice
R e numberi-1 of the 3D volumeY’, and mask out those values which
S are more tham position away from the shortest-path obtained from
Q row numberi. Then a new shortest-path is obtained in this 2D matrix
NG from left to right. This process of obtaining shortest-path is repeated
Fig. 2. The illustration of the 3D maximum-surface which give the maximutintil the shortest-path for the first row of the image is obtained.
accumulation of values in the 3D cross correlation coefficient volume. Putting all the shortest-paths for each of the scan line together
forms a 3D surface within the 3D volume &f. Because successive
Now we describe our algorithm for the maximum-surface exhortest-path for each scan line is obtained in the neighbourhood of
traction in a 3D volume of size ND using our fast TSDP the previous path position, the 3D maximum-surface technique gives
method. The first stage of the algorithm is to obtain an accumulatgtbre consistent disparities. The complexity of the TSDP algorithm
intermediate 3D volume in the vertical direction for each verticak linear with respect to the size of the 3D volume, (XM N D).
j slice. AssumeC'(4, j, d) is the correlation coefficient value in the
input 3D volume at positior, 7, d), where &i<M, 0<j<N, and
0<d<D. We create an intermediate arr&y(i, j,d) which contains B. Algorithm Steps
the accumulated values of the maximum cross correlation coefficientsrne steps of our algorithm, which uses the combination of RSR
for each verticalj slice of the same 3D volume using dynamicang TSDP, for fast stereo matching in a coarse-to-fine scheme are:
programming techniques say from top to bottom, i.e. whehanges
from O to M-1. For those values in the top horizontal slice of the
volume, i.e. when = 0,

1) Build image pyramids withP levels (from 0 toP — 1), from
the original left and right images.

2) Initialize the disparity map as zero for level= P — 1 and

Y (0,5,d) = C(0, j,d) 1) start stereo matching at this level.



3) Perform stereo matching using the method described in Sd& FAST PANORAMIC STEREOMATCHING USING CYLINDRICAL

tions II-11l which includes: MAXIMUM SURFACES!
a) Segment images into rectangular subregions based on theanoramic images are becoming increasingly popular in image-
current disparity map; based virtual environment representations and digital photography.

b) Perform fast zero mean normalised correlation to obtajsanoramic stereo images are also becoming available for 3D appli-

the correlation coefficients for each subregions and builchtions. The panoramic stereo images that we are interested in are

a 3D correlation coefficient volume for the whole imageihe 360-degree stereo images on a cylindrical surface. Panoramic

c) Use the two-stage dynamic programming technique tereo images can be obtained by a number of methods. They can be
find the 3D maximum-surface, which will then give thegenerated by mosaicking images from a rotating camera [18], [19],

disparity map as described in Section III. or by using special imaging optics [20], [21], [22], [23].

4) If k # 0, propagate the disparity map to the next level in the Some matching methods for panoramic stereo images use standard

pyramid using bilinear interpolation, sét= k — 1 and then window based correlation search [21], [24], [19]. Because of the

go back to Step 3; ik = 0, go to Step 5. special wrap-around property for the panoramic stereo images, special
5) Display disparity map. care needs to be taken during the stereo matching process. Zheng
and Tsuji used circular dynamic programming for matching vertical
C. Experimental Results features in panoramic images [25]. kit al used tensor voting

This section shows some of the results obtained using ow@chniques for matching multiperspective panoramas [26].
RSR+TSDP algorithm described earlier. The input left and right Here we propose to use cylindrical maximum surface techniques
images are assumed to be rectified epipolar images. Implementatifimscarrying out dense panoramic stereo matching considering the
of the Roy’s [15], Cox’s [16] and Sun’s [13] methods are used farontinuity of neighboring epipolar scanlines. We can use the tech-
comparison. The codes for Roy’s and Cox’s methods are downloadedues described in Section II-A for fast correlation calculation. As
from their web pages. a result of the fast similarity measure, we obtain a 3D correlation

Figures 4-5 show some results using real images. The inpuglume. The size of the volume depends upon the image row and
Pentagon images are shown in Figure 4(a,b). The matching resattdumn numberg//, N and the maximum disparity search rangeas
for our method, Roy's, Cox’s and Sun'97 methods are given ishown in Fig. 6(a). As the inputs are panoramic stereo images, the 3D
Figure 4(c,d,e,f). The input Fruit scene images are shown in Figerrelation coefficient volume obtained actually forms a cylindrical
ure 5(a,b). The matching results for our method, Roy’s, Cox’s anlume as shown in Fig. 6(b). We will find a maximum surface within
Sun’97 methods are given in Figure 5(c,d,e,f). From the results shottis cylindrical volume for disparity estimation.
in Figures 4 and 5, it can be seen that our RSR+TSDP method gives
more consistent results than the other three methods. Many other
types of real images have also been tested, and good results have
been obtained. Image

The typical running time for the algorithm on a 26856 image Rows| |
with about 30 pixels disparity is in the order of several hundred (M) e S
milliseconds with a 500MHz Pentium IIl running Linux. Table I gives
some of the typical running times of the algorithm on different sizes
of images with different disparities using whole image correlation
and the RSR methods. The time shown for “User timel” is obtained
without using the RSR method, while the time shown for “User
time2” is obtained by using the RSR method. It can be seen that
the time spent by the algorithm using RSR method is almost half of
the time without using the RSR method.

Table Il gives some of the typical running times of the 2D matrix
and 3D maximum-surface algorithms on different size of images. The
computation time for the 3D surface method is only slightly longer
than that of the 2D path method. Table Il shows the computation
times for Roy, Cox and our algorithms on three pair of images.
Roy’s algorithm takes much longer to finish compared with other two

algorithms. Our method is also much quicker than Cox’s method.Fig. 6. Anillustration of the 3D correlation coefficient volume for panoramic
stereo images obtained after using the fast correlation method. (a) shows the

TABLE Il 3D volume; and (b) shows the same volume in cylindrical shape.
Running times of different algorithms.

Image Columns (N)

@)

(b)

Image Im_age Disp. Roy's Cox’s Our A. Circular Shortest Path in 2D Matrix
name size range | method | method | method ] ] ] ) o
RDS | 300300 10 | 300.63s 1.44s 0.45s In panoramic stereo matching, a horizontal slice of the cylindrical
pm | 512x480 55 | 374.83s 2.28s 1755 volume as shown in Fig. 7 has the property that the left most and
bentagon 512x512 55 | 462.475 5435 1.62s the right most columns are connected. This 2D slice can also be
shown in the format of a cylindrical surface as in [27]. In traditional
stereo matching, dynamic programming (DP) techniques have been
D. Fast Stereo Matching Web Demo used to obtain shortest paths to estimate disparities [28], [13], [29].
Our fast stereo matching algorithm web demo is at: 1This section is a joint work with Professor Shmuel Peleg at School of

http://extra.cmis.csiro.au/lA/changs/stereo/ Computer Science and Engineering, The Hebrew University, Israel [2].



(c) RSR+TSDP

(d) Roy's method (e) Cox’s method (f) Sun'97

Fig. 4. Pentagon stereo. (a) and (b) are the right and left input images. (c) Results obtained using our method (RSR+TSDP). (d) Results obtained using
Roy’s method. (e) Results obtained using Cox’s method. (f) Results obtained using the method described in [13]. (Images (a,b) courtesy of t#l Hoff at
Univ. of lllinois [17]).

-

- ‘w =
(c) RSR+TSDP

(d) Roy’s method (e) Cox’s method (f) sun'97

Fig. 5. Fruit stereo. (a) and (b) are the right and left input images. (c) Results obtained using our method (RSR+TSDP). (d) Results obtained using Roy’s
method. (e) Results obtained using Cox’s method. (f) Results obtained using the method described in [13]. (Images (a,b) courtesy of Bill Haffeasitye Un
of Illinois [17]).



TABLE |
Running times of the whole image correlation and the RSR algorithms on different images. The dynamic programming stage of this test runs on 2D matrix.
The size of the correlation window is<®. The reduction ratior used in the pyramid generation process is 2.

Image Image Pyramid | Search | Disparity User | User

name size levels | range range || timel | time2

ball 256x256 3 [-4,4] [-19,7] 0.53s| 0.32s

pentagon 512x512 3 [-2,2] [-10,10] 2.42s| 1.39s

circuit 512x512 3 [-5.,5] [-21,23] 3.36s| 1.59s

flat 1000x 1000 4 [-3,3] [-31,23] || 16.86s| 7.51s
TABLE Il

Running times of our algorithms on different images. The size of the correlation windowdisThe reduction ratio- used in the pyramid generation
process is 2. Both of these algorithms use RSR.

Image Image Pyramid | Search | Disparity Method Method
name size levels | range range || 2D path || 3D surface

ball 256% 256 3 [-4,4] [-19,7] 0.32s 0.37s
pentagon 512x512 3 [-2,2] [-10,10] 1.39s 1.50s
circuit 512x512 3 [-5,5] [-21,23] 1.59s 1.82s
flat 1000x 1000 4 [-3,3] [-31,23] 7.51s 7.53s

For panoramic stereo matching, we can use circular shortest pgives the maximum summation of the correlation coefficients along

(CSP) extraction technique to obtain a CSP in each 2D correlatithe surface inside the cylindrical volume.

matrix (sizedN D as shown in Fig. 7) so that the starting and ending The process of obtaining such surface is similar to that for

positions of this path are connected. obtaining the 3D surface described in Section Il except replacing
shortest path with circular shortest path.

Fig. 7. One slice of the 3D cylindrical volume shown in Fig. 6.

Five algorithms (MSA: multiple search algorithm; IPA: image
patching algorithm; MBTA: multiple backtracking algorithm; Com-
bination algorithm of IPA and MBTA; and Approximate algorithm)Fig. 8.  The cylindrical maximum surface which give the maximum
in [27] and one (BBCSP: circular shortest path by branch and bourgfcumulation of cross correlation values in the cylindrical volume. The vertical
in [30] have been developed for CSP extraction on regular grids 1y 'ctangle in the figure shows one vertical slice at posifiaf the cylindrical

| .
images when the left and the right columns of the grid are neighbou\r/g.ume

One can simply use the CSP extraction algorithm mentionedpytting all the CSPs obtained for each of the scanline together form
earlier to obtain a CSP for each slice of the 3D cylindrical volumg 3p cylindrical surface within the 3D volume. Because successive
independently for the disparity estimation of the panoramic sterggsp for each scanline is obtained in the neighbourhood of the
images. However this approach does not take information frogpevious path position, the cylindrical maximum surface gives more
neighbouring scanlines into account (apart from the windowing effeginsistent disparities. The result of obtaining this cylindrical surface
during correlation). In the following subsection, we use this CSR that the summation of the correlation values on this surface is
extraction technique to obtain a 3D surface in the cylindrical volumgaximum.
for panoramic stereo matching. We intend to obtain a maximum 3D
cylindrical surface rather than a number of independent CSPs.

C. Experimental Results

) . o This section shows some of the results obtained using our method

B. Maximum Surface in a Cylindrical Volume described in previous sections. The input left and right panoramic
In this subsection, we will approach the issue of obtaining thetereo images are assumed to be rectified epipolar images.

panoramic stereo disparity map from the cylindrical shaped 3D Figure 9 shows the different results obtained for a portion of a
correlation coefficient volume using a CSP technique, which anoramic stereo images by using just the CSP algorithm or the
computationally efficient. A cylindrical maximum surface which cutgylindrical maximum surface technique. Figure 9(a) is the result
through the cylindrical volume from the top to the bottom as showwbtained using the CSP algorithm for each horizontal slice of the
in Fig. 8 is obtained in two steps. The cylindrical maximum surfacD correlation volume independently. Figure 9(b) gives the result



obtained using the cylindrical maximum surface technique. Note that
there is a white streaking around the top left region and there is a
dark streaking around the bottom right region in Fig. 9(a). Dx
Image
Rows
(M) o
4
&Q}C‘,} s
2,4
0

Image Columns (N)

Fig. 11.  An illustration of the correlation volume obtained after using our
fast correlation method. The number of correlation planes equals the size of
the search regioD, D, .

@) (b) Dy
Fig. 9. Different disparity results obtained for a portion of the panoramic
stereo images. (a) Disparity obtained using CSP for each horizontal slice of the
3D correlation volume; (b) Disparity obtained using the cylindrical maximum
surface technique. Dy

Figure 10 gives the results obtained by using our methods descrigd 15 correlation volume for each scanline. Each plane in the volume
in previous sections. The first two images are the left and the rigfdntains the correlation coefficient values within a search region. There are
input panoramic stereo images. The third image is the disparity m&jpsuch planes for each scanline.
obtained. The running time for the algorithm on a 18220 image
is about 0.34 seconds on a 1.7GHz Linux PC. We are showing ] i _ _
the disparity for every points of the stereo images. The work By Shortest Path in 3D Using Dynamic Programming
Li et al [26] for depth estimation from multiperspective panoramas We propose a method which uses a 3D shortest path through the 3D
by the use of tensor voting techniques seems to give good resutstrelation volume for each scanline of the input image to produce a
Their algorithm, however, takes about 60 minutes on a Pentium dbnsistent set of motion vectors. This volume is one horizontal slice
550MHz. of the correlation volume shown in Fig. 11. The position of the path
indicates the best motion vector for this scanline. Because the path is
continuous, the motion vectors obtained for neighbouring pixels are
more consistent with each other.

Optical flow or image motion is the displacement of each image Now we describe our algorithm for the shortest path extraction in
pixel in an image sequence. Image motion estimation is a fundamerataBD volume using efficient dynamic programming techniques. For
issue in low-level vision and is used in many applications sudh< p < D, 0 < ¢ < Dy and0 < k < N, let C(p,q, k) be
as robot navigation, object tracking, image coding, and structutiee cost (or the correlation coefficient value) of the ¢, k)th value
reconstruction. There are several types of methods for estimatingthe 3D volume of sizeD,D,N. Array Y (p, g, k) contains the
image motion or optical flow [9]. These methods can be dividegiccumulated values anli (p, ¢, k) has the position which produces
into correlation-based [31], [32], [33], [34], energy-based [35], phas#ie local maximum value. Wheh = 0,
based [36], gradient-based [37], [38], [39], [40] methods, and orthog-
onal dynamic programming method [41]. In this section we develope Y(p,q,0) = C(p.g,0) (3)
algorithms for image motion estimation by using fast correlation ang. the first plane oft” is a copy of the first plane of. For the
dynamic programming techniques. remaining planesith plane) of the volume, th& values at each

position is obtained using the following recursion:

Y tk—1) (4
x| (p+s,q+t, ) 4)

The result of the correlation calculation described in Section II-C i?he values ofs, ¢ which achieves the maximum in Eq. (4) during
a volume containing the correlation coefficients as shown in Fig. 1&ach iteration i’s stored if '

The size of the volume depends upon the image 8iz& and the

motion search rangeB®, and D,. Each pixel in the first image has K(p,q,k) = argmax ;.. <1, g<1¥ P+ s,g+t,k—1) (5)
D, D, correlation coefficients in the corresponding search region
the second image. These coefficients are stored in a 1D vector I from the maximum value in the last plane ¥6f After the Y

the 3D volume as shown in Fig. 11. This vector represents the . .

) ) . . : and K volumes have been obtained, we can start the backtracking
search region shown in the right hand side of the same figure. There . .

) . . . . process to obtain the 3D shortest path. One 3D path is extracted for

are N such 2D search regions containing the correlation coefﬁmerﬁs . . ; .
. . ) : . : each horizontal scanline of the input image.
in each horizontal scanline of the input image. These 2D regions can
be stacked together to produce a 3D volume of correlation coefficients )
with dimensionsD,. D, N for each scanline of the image as shown ife- Sub-pixel Accuracy
Fig. 12. This correlation volume will be used to obtain motion vectors The result of shortest path extraction produces motion estimation
for this scanline using 3D shortest path method to be describedup to pixel level accuracy. Sub-pixel accuracy can be obtained by

Section V-B. fitting a second degree surface to the correlation coefficients in the

V. FAST MOTION ESTIMATION

A. Correlation Volume Y(p,q,k) = C(p,q, k) +

he values stored in volum& are used to backtrack along the best



Fig. 10. The first and second images are the left and right input images [20]. The third image gives the matching results using our method described in thi
paper.

neighbourhood of the motion vector and the extrema of the surface3) Using dynamic programming technique to find the best path in
can be obtained analytically. The general form of the second degree the 3D volume, which will then give the motion vectors;
surface is:S(z,y) = A- 2> +B-aoy+C - y* +D -z + E - 4) Fitting the correlation values in the neighbourhood of the
y + F. The maximum can be found where the slope is zero in the  motion vector obtained in the previous step to a surface to
quadratic equation. The sub-pixel position can be found by solving  obtain sub-pixel accuracy.

the following equation:

2A-z + B-y + D = 0 E. Experimental Results
B-x + 20C- + E =0 ©)
y This section shows some of the results obtained using our motion
Solving Eq. (6) we have: estimation method. Comparisons with some of the commonly cited
z= (BE —20D)/(4AC — B?) @ Feclhr:jllques ars qlsp made. Aa\égfrflety of |magefs hellvg been tested,
y= (BD—2AE)/(4AC — B?) including synthetic images and different types of real images.

Fig. 13 shows the results of different techniques on the image
When estimating the coefficientd, B, C, D, E and F' of function  sequence “Yosemite”. The first two images in the top row are frames
S(z,y), one usually needs to solve a set of over-determined linegrang 10 in the sequence. The third picture in the top row is the
equations. A quick way of obtaining the coefficients $fz,y) is  correct optical flow field. The results of Fleet's, Horn's and Lucas’
necessary to make sub-pixel accuracy motion estimation practicatechniques give sparse flow fields, while other techniques give dense
If the shortest path passes positignq) at planek of the volume, gptical flow. The techniques producing reasonable results for the top
we use the nine correlation coefficient values in the neighbourho%blon of the image are Singh’s and ours.
of (p,q) as input. We have derived the following formula for the Taple |V shows the errors, flow density, number of image frames
calculation ofA, B,C, D, E and F" using nine neighbouring values. ysed and the time that several techniques used for calculating the flow

(A=(b_ ) —2b_y+be ) +b .y —2bey +b )+ field. The errors in Fleet’s, H.orns and Lu.cas techniques are small
b1y — 2b( 4y +bs.4))/6 because they only use the reliable flow estimates. Uras’ technique and
B =(b_,_y = by _y = b_ 1y + by ))/4 our technique give smaller errors and our technique gives the higher
C =(b_,_y +be—y by —2b_ .y — 2be.y — 2bey 9+ computation speed. But Uras al's technique does not perform well
by +bey + by 1))/6 at the top region of the image, and 15 frames of the sequence are
D =(=b_ _y+bey._y —b_y+br.y = by +by))/6 required. The test were run on a 85MHz Sun SPARCserver1000
E=(=b_ _y—be,y—ber y+b 4y+bei)+b1)/6 running Solaris 2.5. All the programs apart from the author’'s were
F =(=b_ _y+2b(,_y—beyy+2b .y +5b..) + 2bey y— obtained from the ftp site dtp://csd.uwo.ca/pub/vision
{ b4y +2b( 4y —b(1.19)/9 The typical running time for our algorithm on a 26856 |mage is

(8) in the order of seconds.
where b(,,,) = S(p — 1,9 — 1),b(.,,) = S(p,q — 1),b(+,,) =
Slp+1,q9 — ].),b(,,.) = S(p — 1,q),b(.,.) = S(p,q),b(+,.) =
S(p+17Q)7b(—,+) = S(p— 17Q+1)7b(-,+) = S(p7Q+1)7b(+,+) =
S(p+1,q+1). Theb. . s are the values of the local correlation

TABLE IV
RESULTS FOR THE IMAGE SEQUENCHOS.

L . o Av. | Standard Frms User
coefﬂmgnts. One can, therefore, use Eq. (8) to obtain the coefflc_lents Techniqueé error | deviation | Density | used time
chéﬂ?;élor:nii?gnyl,eitnci then use Eg. (7) to calculate the sub-pixel Anandan | 16.37 13.46 | 100.00% > 1849 79s

Y ) Fleet 5.28 14.33| 30.64% | 15| 426.13s

Horn 5.48 11.30| 32.88%| 15| 29.62s

D. Algorithm Steps Lucas 4.48 12.16 | 39.78%| 15| 32.94s
The steps of our algorithm for fast image motion estimation are: | Nagel 12.70 16.68 | 100.00% | 15 | 205.50s
1) Performing fast ZNCC (or use SSD or SAD) to obtain the | Quénot | 9.93 16.16 | 100.00%| 2 | 182.63s
correlation coefficients: Singh | 12.09 15.86 | 100.00%| 3 | 339.36s

2) Building a 3D correlation coefficient volume for each scanline| Uras 8.92 15.611 100.00%| 15| 17.58s
(Or each COlUmn) of the image; Sun 9.21 16.16 | 100.00% 2 14.35s




correct flow

Horn

Quenot

frame 10

frame 9

Fleet

N

N

=
N

Nagel

Anandan

Lucas

Uras

The optical flow results of different techniques on Yosemite sequence. The first two images in the first row are the frames 9 and 10 in the

Fig. 13.

sequence, and the third picture in the first row shows the true optical flow. The name of each technique is given below the corresponding picture.

and good repudgramming technique is used to find a 3D maximum-surface or 3D

Four real image sequences have also been tested
have been obtained. Fig. 14 shows the results of several technigsiesrtest path in the correlation volume.

Rubikhe fast computational speed of our algorithm is achieved with the

on the four real image sequences: SRI Trees, NASA Sequence

Cube and Hamburg Taxi provided in [9].

following aspects: (1) Fast zero mean normalized cross correlation

is used. (2) We have used a rectangular subregioning technique for
fast computation of correlation coefficients (for stereo matching).
(3) Apart from having the advantages of increasing the reliability,

F. Fast Image Motion Web Demo

The web demo address is at:
http://extra.cmis.csiro.au/lA/changs/motion/

the coarse-to-fine approach is also faster than one without using it.

(4) A two-stage dynamic programming technique is used to find a

maximume-surface in the 3D correlation volume. (5) A simple formula

is used for sub-pixel motion estimation.

D1ScUSSION ONRELIABILITY AND COMPUTATIONAL SPEED

VI.

CONCLUSIONS

VII.
is used (for stereo matching). (2) The zero mean normalized cros§Ve have developed a fast and reliable stereo matching method

The reliable results of our algorithm are achieved by applying the

combination of the following techniques: (1) Coarse-to-fine strategy

independent a8ing rectangular subregioning, fast correlation and 3D maximum-

which is

is used
differences in brightness and contrast. (3) The correlation coefficientrface techniques

value is used as input to the dynamic programming stage ratmeaximum

correlation similarity measure

in the coarse-to-fine framework. The 3D

surface is obtained from the 3D correlation volume using

than just using the intensity value of the input images. (4) Dynami two-stage dynamic programming technique. A similar technique



SRI Trees NASA Sequence Rubik Cube Hamburg Taxi

Anandan

Fleet

Horn

Lucas

Fig. 14. The results of different techniques on four of the commonly used images sequences. (Images courtesy of Barron, Fleet and Beauchemin [9].)

was developed for fast panoramic stereo matching using cylindricg®] C. Sun and S. Peleg, “Fast panoramic stereo matching using cylindrical
maximum surface techniques. We also developed an image motion maximum surfacesJEEE Transactions on Systems, Man, and Cyber-

estimation method using fast correlation and 3D shortest path tech- "€tics, Part B.2003, to appear.

. - . 3] C. Sun, “Fast optical flow using 3D shortest path techniguiesdge and
nigues. All the algorithms were shown to be fast and reliable bJ ] Vision ComputiFr)\gvol. 20, no.gl3/14, op. 98&)_9917 Degembegr 2002.
testing on several different types of real images. 4]

S. Birchfield and C. Tomasi, “Depth discontinuities by pixel-to-pixel
stereo,” International Journal of Computer Visiorvol. 35, no. 3, pp.
ACKNOWLEDGEMENT 269-293, 1999.

. . . . . [5] D. Scharstein and R. Szeliski, “Stereo matching with nonlinear diffu-
The panoramic stereo images used in this paper were acquwéd sion.” International Journal of Computer Vision/ol. 28, no. 2, pp.

at the School of Computer Science and Engineering, The Hebrew 155_174, 1998.
University, 91904 Jerusalem, Israel. The author is grateful to thg)] Y.-S. Kim, J.-J. Lee, and Y.-H. Ha, “Stereo matching algorithm based on
owners of the images used in this paper. modified wavelet decomposition procesBattern Recognitionvol. 30,
no. 6, pp. 929-952, 1997.
[7] B. Porr, A. Cozzi, and F. \Wrgétter, “How to ‘hear’ visual disparities:
real-time stereoscopic spatial depth analysis using temporal resonance,”
[1] C. Sun, “Fast stereo matching using rectangular subregioning and Biological Cyberneticsvol. 78, no. 5, pp. 329-336, 1998.
3D maximum-surface techniquediiternational Journal of Computer [8] D. G. Jones and J. Malik, “Computational framework for determining
Vision vol. 47, no. 1/2/3, pp. 99-117, April-June 2002. stereo correspondence from a set of linear spatial filténssige and
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