
Real-Time Imaging 7, 519–527 (2001)
doi:10.1006/rtim.2001.0265, available online at http://www.idealibrary.com on
Fast Algorithm for Local Statistics
Calculation for N-Dimensional Images

L
ocal mean and variance measures are frequently required in multi-dimensional image
analysis. These measures are needed when calculating correlation coefficients for local
image matching purposes. Other measures such as skewness and autocorrelation are useful

for texture analysis. This paper presents a fast algorithm for calculating these local statistics in a
window of an N-dimensional image. The new algorithm, which is called the plunger method,
recursively reduces the dimensions of the input N-dimensional image to achieve fast computation.
The speed of the algorithm is independent of the window size. Another advantage of the
algorithm is that it calculates the local statistics in one pass. Real image tests have been
performed.

2001 Academic Press

Changming Sun

CSIRO Mathematical and Information Sciences,
Locked Bag 17, North Ryde, NSW 1670, Australia

E-mail: changming.sun@cmis.csiro.au
Introduction

Local mean estimator provides one of the methods for
smoothing an image and is often useful as a general-
purpose smoothing algorithm when the exact form of
the smoothing point-spread function is not important
and when the computational speed is an issue. This
application applies a square or rectangular box filter to a
one- or two-dimensional image for smoothing purposes.
Each output pixel is the mean of the input pixels within
the filter box. Local variance calculation in an image is
also important. Apart from the application of mean and
variance filtering of an image, the obtained local mean
and variance can be used for fast calculation of cross
correlation or sum of squared differences between two
images for image matching or registration purpose.
Local skewness and autocorrelation measures can be
used for image texture analysis [1, Ch. 9].
1077-2014/01/060519+09 $35.00/0
McDonnell [2] described several box-filtering proce-
dures for 2D images. The main advantage of box
filtering is its speed, which approaches four operations
for each output pixel and is independent of box size. Sun
[3–5] extends the idea of box filtering for fast calculation
of normalized cross correlations for 2D images for the
purpose of stereo matching and image motion estima-
tion. Luciano da Fontoura Costa describes a numerical
approach to the expedite calculation of vector fields in
two-dimensional spaces and how it has allowed the
effective application of Gauss’ law in image analysis and
computer vision [6].

3D images, especially in the medical area such as
MRI, CT, PET, and ultrasound, are becoming more
readily available. We might also like to treat a sequence
of 2D images as a 3D image volume for spatiotemporal
analysis [7]. Other types of 3D data include seismic data
2001 Academic Press

520 CHANGMINGSUN
volume [8], confocal microscopic images [9], spectro-
scopy images in medical and remote sensing applica-
tions. Imaging scanners now exist that can generate 4D
images. A 4D image is a time sequence of 3D volumetric
images. Much work has been done in the world of 4D
imaging. Kriete et al. outlined 4D microscopy resources
and visualization techniques in [10], while ANALYZE
[11] and VIDA [12] are medical image analysis packages
that can be used for visualization and display of 4D
images. In addition, studies on image enhancement
using 4D mathematical morphology and 4D morpholo-
gical filters [13–15] have shown their utility. Higgins
et al. [16] describe a procedure for performing semi-
automatic image segmentation and analysis upon a 4D
cardiac image. Niessen et al. [17] introduced a general
framework for spatiotemporal analysis of (D+1)-
dimensional datasets. Rohr studied the extraction of
3D point landmark using 3D differential operators [18].
Most of the 4D images are currently from medical
applications.

In this paper we present fast algorithms for local
statistics calculation for N-dimensional images. We will
extend McDonnell’s 2D box filtering method of
calculating the local mean to calculating local variance
and local skewness during the same pass on 2D images.
We will also extend the 2D method to general
N-dimensional images for fast calculation of local
statistics. We call the new algorithm the ‘‘plunger
technique’’.

The rest of the paper is organized as follows: The next
section reviews the 2D box filtering techniques and
extends it for the calculation of local variance, skewness,
covariance, auto-correlation and cross-correlation. The
fast algorithm which is extended for N-dimensional
image is then described. The section following then
shows the experimental results obtained using our
‘‘plunger’’ method. The final section gives the conclud-
ing remarks.

Fast Algorithms for 2D Images

Local mean calculation is a straightforward technique
for image smoothing. Given an N-dimensional image
f (x), where x is an N-dimensional variable x=(x1,
x2, . . . xN), and the size of the image is X1X2 . . .XN. The
procedure is to generate a smoothed image �ff (x) whose
gray level at every point x is obtained by averaging the
gray values of the pixels contained in a predefined
neighbourhood of x. The size of this neighbourhood or
window size is (2W1 þ1) (2W2þ1) . . . (2WNþ1), where
Wi is a natural number. The local mean is obtained by:

�ff ðxÞ ¼
1

T

X
m; n; s;���; p2S

fmns . . . p ð1Þ

where S is the set of coordinates of points in
the neighbourhood of x including itself, and T is the
total number of points in the neighbourhood. m, n,
s, � � �, p are the indices for the pixels in the neighbour-
hood, and fmns . . . p is the intensity of f at position
m, n, s, � � �, p.

Local variance of an image can be obtained by using
the following equation:

f̂f ðxÞ ¼
1

T

X
m; n; s; ...; p2S

ðfmns . . .p ÿ �ff Þ2 ð2Þ

In the following subsections, we will first review the 2D
box filtering technique for fast calculation of local mean
of an image, and then extend the method for fast
calculation of local variance, skewness, and other
measures at the same time when obtaining the local
mean.

Box filtering: Review

A brief review of the 2D box filtering technique is given
as follows (a detailed description can be found in [2]).
Let fmn be the intensity value of an X16X2 sized 2D
image f at position (m, n), while f is to be box filtered
into �ff , i.e. obtaining the mean of the original image
within a local box. Then for a (2W1þ1)6(2W2þ1) box
filter:

�ffij ¼
1

T

XiþW1

m¼iÿW1

XjþW2

n¼jÿW2

fmn; ð3Þ

where the denominator T is a constant (2W1þ1)
(2W2þ1).

The procedures of box filtering can be described as
follows (referring to Figure 1). Each output row of �ff is
calculated using the window ABCD in f. The size of this
window equals X2 (2W1þ1). A buffer BUFM1[X2] is
maintained for this window. Each element of BUFM1 is
the sum of the pixels in the corresponding column of the
window. That is:

BUFM1½ j� ¼
XiþW1

m¼iÿW1

fmj, j ¼ 0; . . . ; X2 ÿ 1: ð4Þ

Figure 1. The windowing process of the box filter operation
in the 2D case. EFGH indicates a local window or box [2].

FAST LOCAL STATISTICS FORN-D IMAGES 521
After each row of �ff has been calculated, the window
moves down one row, and BUFM1 is updated by adding
the new row and subtracting the old one as indicated in
Figure 1.

Each �ffij is calculated using the box EFGH. A value
SUMM is stored for each box position given by:

SUMM ¼
XjþW2

n¼jÿW2

BUFM1½n�: ð5Þ

As the box moves horizontally, SUMM is updated
by adding in a new BUFM1 value from the right and
subtracting out a value from the left. Thus:

�ffij ¼
SUMM

T
: ð6Þ

When the first row of �ff is calculated, BUFM1 must
be initialized explicitly. Similar initialization must
be performed for the first value of each row of
SUMM.

Extension to fast calculation of variance

In the 2D case, the following equation (Eqn 7) may be
obtained by a rearrangement of Eqn (2). It can be seen
that the pixel variance within the box can also be
obtained during the same pass as that which calculates
the mean. This is achieved by accumulating the square
of the intensity values while accumulating original pixel
values for mean calculation. The variance of pixels
within the box (f̂fij) is calculated using the last row of
Eqn (7).

f̂fij ¼
1

T

XiþW1

m¼iÿW1

XjþW2

n¼jÿW2

ð fmn ÿ �ff ijÞ
2

¼
1

T

XiþW1

m¼iÿW1

XjþW2

n¼jÿW2

ð �ffmn
2
ÿ 2�fmn� �ffij þ �ff

2

ij Þ

¼
1

T

XiþW1

m¼iÿW1

XjþW2

n¼jÿW2

f 2mnÿ �ff
2
ij

¼S ÿ �ff 2
ij

ð7Þ

where

S ¼
1

T

XiþW1

m¼iÿW1

XjþW2

n¼jÿW2

f 2mn: ð8Þ

The S term in the above equation can be obtained
by using a method similar to that which calculates
the local mean. A similar buffer BUFV1 is maintained
for the first term of the above equation. Each element
of buffer BUFV1 contains the sums of the square of
pixel values in the corresponding column of the
window.

BUFV1½ j� ¼
XiþW1

m¼iÿW1

f 2mj ; j ¼ 0; . . . ; X2 ÿ 1: ð9Þ

After each row of f̂f has been calculated, the window
moves down one row, and BUFV1 is updated by adding
the new row and subtracting the old one as indicated in
Figure 1 at the same time as one updating the buffer
BUFM1.

Each f̂fij is calculated using the same box EFGH.
A value SUMV is stored for each box position given
by:

SUMV ¼
XjþW2

n¼jÿW2

BUFV1½n�: ð10Þ

As the box moves horizontally, SUMV is updated by
adding in a new BUFV1 value from the right and
subtracting out the value from the left. Thus:

f̂fij ¼
SUMV

T
ÿ �ff 2

ij : ð11Þ

When the first row of f̂f is calculated, BUFV1 must
be initialized explicitly. Similar initialization must
be performed for the first value of each row of
SUMV.

522 CHANGMINGSUN
Therefore we have a fast way to obtain the local mean
and variance of the input 2D images.

Extension to fast calculation of skewness, autocorrelation,
covariance and cross-correlation

The last two subsections describe fast algorithms for
obtaining the two most commonly used local statistical
measures: mean and variance. This subsection will give
fast algorithms for calculating the skewness, covariance,
auto-correlation, cross-correlation and higher order
central moments within a local window. The covariance
and cross-correlation calculations will need two input
images.

The formula for the skewness measure within a 2D
window is the following:

~ffij ¼
1

T

XiþW1

m¼iÿW1

XjþW2

n¼jÿW2

ð fmn ÿ �ff ijÞ
3

¼
1

T

XiþW1

m¼iÿW1

XjþW2

n¼jÿW2

f 3mn ÿ 3S �ffij þ 2 �ff 3ij

ð12Þ

where �ffij and S are defined in Eqns. (3) and (8). Higher
order central moments such as

1

T

XiþW1

m¼iÿW1

XjþW2

n¼jÿW2

ð fmn ÿ �ff ijÞ
k

can also be calculated efficiently. The first term in Eqn
(12) can be obtained by using a method similar to that
which calculates the local variance. A similar buffer
BUFS1 is maintained for the first term of the above
equation. Each element of buffer BUFS1 contains the
sums of the cube of pixels in the corresponding column
of the window.

BUFS1½ j� ¼
XiþW1

m¼iÿW1

f 3mj ; j ¼ 0; . . . ;X2 ÿ 1: ð13Þ

After each row of ~ff has been calculated, the window
moves down one row, and BUFS1 is updated by adding
the new row and subtracting the old one as indicated in
Figure 1 at the same time as one updating the buffer
BUFV1. Each ~ffij is calculated using the same box
EFGH.

The autocorrelation of local windows of an image can
also be obtained using similar algorithms. If we
notionally make a copy of the input image and put it
on top of the original input image with a 2D shift (k, l),
then the autocorrelation function

f
0kl
ij ¼

1

T

Xi¼W1

m¼iÿW1

XjþW2

n¼jÿW2

fmnfmþk;nþl ð14Þ

can be efficiently obtained by accumulating fmn fmþk; nþl
instead of fmn for mean, f 2mn for variance and f 3mn for
skewness calculation.

If there are two images fij and gij and local covariance
is to be calculated, then the following equation can be
used. (k, l are the relative image shifts):

c
0kl
ij ¼

1

T

XiþW1

m¼iÿW1

XjþW2

n¼jÿW2

fmngmþk;nþl ð15Þ

All the measures described above are obtained from the
image pixel values within a local window with equal
weighting. If a non-equal weighting scheme such as the
Gaussian smoothing function is necessary, more ex-
pensive computation will be needed. For the equal
weighting scheme such as those for mean and variance
calculation, only two operations are necessary for each
pixel on each dimension of the input image. For a
relatively fast Gaussian smoothing algorithm, it will
need six operations for each pixel on each dimension of
the input image [19]. The non-linear min/max opera-
tions, which are the fundamental mathematical mor-
phology operations, need three operations for each pixel
on each dimension of the input image [20].

Fast Algorithm for nD Images

We will now extend the 2D box filtering technique
described in the previous section into N-dimensional
cases. As the operation process of our new method is
similar to the operation of a coffee plunger, we have
named it the ‘‘plunger technique’’.

3D images

In the 2D case, the major operation unit is a 2D moving
window (or sliding window e.g. window ABCD as
shown in Figure 1) which contains the sum of pixels in
the corresponding column of the window. In the 3D
case, we use a moving volume as the operation unit. The
size of this volume is X1X2(2W3þ1), where (2W3þ1) is
the size of the local window in the X3 or Z direction.
When this volume or 3D box moves from one position
to the next, it absorbs one slice of the image from one

Figure 2. The windowing process of the box filter operation
for 3D images [2].

FAST LOCAL STATISTICS FORN-D IMAGES 523
side of the volume and releases another slice of the
image from the other side. The image values within this
volume are accumulated into one 2D array.

If we imagine that the filter in a coffee plunger has
certain thickness, this filter holds a certain amount of
coffee. When we push the plunger down, some coffee
comes into the filter from the bottom side. At the same
time some coffee will be pushed out of the filter. We will
use a similar process to filter 3D and multiple dimen-
sional images. The moving volume acts like the filter in
the coffee plunger. This volume moves in the X3 or Z
direction and collects/releases the pixel values along the
way (see Figure 2). The situation shown in the figure is a
local volume with W3=1 at position i which contains
three image planes: 2, 3, 4. When the local volume
moves from position i to position iþ1, the image plane
number 5 moves into the volume, while image plane
number 2 moves out of the volume.

Similar to the 1D buffers used in the 2D
image situation, three 2D arrays or buffers BUFM2,
BUFV2 and BUFS2 need to be created (BUFM2

for mean calculation, BUFV2 for variance calculation
and BUFS2 for skewness calculation). If we do not
need to obtain the variance or skewness measures, the
temporal array BUFV2 or BUFS2 is not necessary. These
arrays store the summation of pixel values, squares
of pixel values and cubes of pixel values along the
X3 axis:

BUFM2½i, j� ¼
XkþW3

s¼kÿW3

fijs ð16Þ

BUFV2½i, j� ¼
XkþW3

s¼kÿW3

f 2ijs ð17Þ

BUFS2½i, j� ¼
XkþW3

s¼kÿW3

f 3ijs ð18Þ

At each position (k) of the moving volume, we then
have three 2D arrays that contain the summation of
pixel values, the squares of pixel values and the cubes of
pixel values along the X3 direction within the volume.
We can then use these three 2D arrays as input to
calculate 3D local mean, variance and skewness using
the method described previously. Because buffer BUFV2

(BUFS2) has already performed the square (cube) of the
pixel values, when calling the 2D functions, the BUFV1

(BUFS1) buffer does not need to perform square (cube)
operations for the original pixel values. BUFV1 (BUFS1)
just needs to accumulate the values in buffer BUFV2

(BUFS2).

4D images

A 4D image is a sequence of 3D volume images taken at
different times (see Figure 3). We can also extend the
procedure for 3D images to work for 4D images for the
fast calculation of local mean, variance and skewness in
one pass.

In the 3D case, the major operation unit is a 3D
moving volume which contains the sum of pixels, sum of
square of pixel values and sum of cube of pixel values in
the X3 axis. In the 4D case, we use a local 4D moving
sequence or box as the operation unit. The size of this
sequence is X1X2X3 (2W4þ1), and (2W4þ1) is the size of
the local ‘‘window’’ in the X4 direction. When this 4D
box moves from one position to the next, it absorbs one
volume of the image from one time position of the
sequence and releases another volume of the image from
the other time position. The image values within this 4D
box are accumulated into three 3D arrays. We will use
similar process to filter 4D images as the process for 3D
cases (see Figure 2).

Similar to the buffer used in the 3D situation which is
a 2D buffer, three 3D arrays or buffers BUFM3, BUFV3,
and BUFS3 need to be created for 4D images. These

Figure 3. The windowing process of the box filter operation for 4D images.

524 CHANGMINGSUN
arrays store the summation of pixel values, squares of
pixel values and cubes of pixel values along the X4 axis:

BUFM3 ½i, j, k� ¼
XlþW4

t¼lÿW4

fijkt ð19Þ

BUFV3 ½i, j, k� ¼
XlþW4

t¼lÿW4

f 2ijkt ð20Þ

BUFS3 ½i, j, k� ¼
XlþW4

t¼lÿW4

f 3ijkt ð21Þ

At each position of the moving volume (l), we then
have three 3D arrays that contain the summation of
pixel values, the square of pixel values and cube of pixel
values along the X4 direction within the sequence. We
can then use these three 3D arrays as input(s) to
calculate 4D local mean, variance and skewness using
the method described for 3D images.

nD images

Again we can extend the plunger technique to higher
dimensions. For N-dimensional images, we can create
three (N71)-dimensional arrays or images BUFMN71,
BUFVN71 and BUFSN71 as given below which contain
the sums of pixel values, sums of the square of pixel
values, and sums of cube of pixel values. The process
can be recursively carried out so that in the end we have
2D arrays, and we can use the fast method in the 2D
case for the calculation of local mean, variance,
skewness and other statistical measures.

BUFMNÿ1 ½i, j, k, . . .� ¼
XrþWN

p¼rÿWN

fijk ... p ð22Þ
BUFVNÿ1 ½i, j, k, . . .� ¼
XrþWN

p¼rÿWN

f 2ijk ... p ð23Þ

BUFSNÿ1 ½i, j, k, . . .� ¼
XrþWN

p¼rÿWN

f 3ijk ... p ð24Þ

Algorithm complexity

Assume we have an equal sided (size X for each
dimension) N-dimensional image and we would like to
smooth the image with an equal sided (size W for each
dimension) box using simple direct averaging (mean
calculation). For each position of the local window, one
needs to add all the pixel values within the window. The
size of the local window is WN. The number of possible
local window positions are XN if we ignore the boundary
effect. The direct implementation would take on the
order of WNXN additions.

For the proposed ‘‘plunger technique’’ for N-dimen-
sional images, the computation involved only has one
addition and one subtraction for each pixel in each
dimension. So we will have 2N additions(subtractions)
for each pixel for all the N dimensions. Therefore, we
have a total of 2NXN additions for the ‘‘plunger
technique’’ which is independent of the local window
size ignoring the effect when processing the pixels values
at image boundaries. Both of the direct and the plunger
techniques need to have XN number of divisions (one
division for each pixel in the image).

For the calculation of variance and skewness, multi-
plications need to be carried out. The multiplications
only happen when we reduce the dimensionality the first
time using the plunger technique. For an N-dimensional
image, the multiplications (square of pixel value, cube of

FAST LOCAL STATISTICS FORN-D IMAGES 525
pixel value) are necessary only when we reduce the
image dimension from N to N71. In all the later stages
of dimensionality reduction, there will be no multi-
plications. The above discussion ignores the processing
of the pixels on the input image boundaries.

Steps for the fast algorithm

Our proposed algorithm for fast calculation of local
statistics for an N-dimensional image is:

1. Given an N-dimensional image, and the box sizes
(2W1þ1), (2W2þ1),. . ., (2WNþ1)

2. Maintain two (or three) buffers BUFMN71 and
BUFVN71 (or BUFSN71) which contain the sum of
pixel values and the sum of square of pixel values (or
cube of pixel values)

3. Recursively reduce the image dimension until the
image dimension is 2, i.e. reduced to 2D images/
arrays
(a) Generate an (N71)-dimensional image/plane

from the original N-dimensional image using
the ‘‘plunger’’ technique described.

(b) Further reduce the dimension of the (N71)-
dimensional image until the dimension is 2.

4. Then, use the 2D box filtering method for fast
calculation of the local mean and variance (or
skewness) on an N-dimensional image.

Experiment Results

In order to remove the boundary effect, pixel padding
can be performed at image boundaries. The padded
pixels can take the mirrored pixel values along the image
boundaries. When the image is one-dimensional, the
Table 1. Running times of the fast plunger algorithm and the dir
different types of images. The timing shown in this table is when t
column ‘‘User time 1’’ is from our fast plunger method; while the
direct implementation. Times are expressed in seconds.

Image name Image size Window sizes

M

line (1D) 25661 361 0.0
561 0.0
761 0.0
961 0.0

trui (2D) 2566256 363 0.0
563 0.0
765 0.0
967 0.0
box size along the insignificant dimension is set to 1. The
sizes of each side of the N-dimensional box need to be
odd to prevent pixel position shift of the resultant
image, but their sizes along each of the dimensional axes
do not have to be the same. That is, the Wi s do not have
to be equal.

When using our fast mean estimator, the execution
time is approximately proportional to the number of
pixels in the image to be smoothed and is largely
independent of the smoothing filter size. This makes the
routine particularly suitable for applying heavy smooth-
ing to an image.

We have tested different type of images with different
dimensions. Table 1 shows the comparison of our new
plunger algorithm and a direct implementation of the
mean and variance calculation algorithm for 1D and 2D
images. The first two columns are the image names and
image sizes. The third column is the window sizes used.
There is no image boundary padding for the timing
shown in this table. ‘‘User time 1’’ is the time spent when
using our new plunger method for calculating the local
mean and variance. ‘‘User time 2’’ is the time spent by a
direct implementation of local mean and variance
calculation. The time spent by our new plunger method
is almost constant while the time spent by the method of
direct implementation is almost linear increasing with
the size of the local window. The decrease in ‘‘User time
1’’ with increases of the local window size is because of
the image boundary effect. That is, the pixels along the
image boundary were not calculated.

Table 2 gives the running times of our algorithm on
several images with and without image boundary
padding. The first column of the table gives the names
ect implementation for local mean and variance calculation on
he algorithms do not have boundary padding. The timing under
timing under column ‘‘User time 2’’ is from the algorithm using

User time 1 (s) User time 2 (s)

ean Variance Mean Variance

002 0.0005 0.0003 0.0007
002 0.0005 0.0004 0.0008
002 0.0005 0.0004 0.0009
002 0.0005 0.0005 0.0011
540 0.1051 0.1169 0.2943
518 0.1050 0.1463 0.4338
477 0.1047 0.2831 0.9237
476 0.1010 0.4564 1.5889

Table 2. Running times of our fast plunger algorithm on different types of images. The timing under column ‘‘User time A’’ is
when the algorithm does not have boundary padding; while the timing under column ‘‘User time B’’ is when the algorithm does
have boundary padding. The percentage of increase of computation time when using image padding for local mean and variance
are given in columns indicated by %m and %v respectively. Times are expressed in seconds.

Image name Image size Window sizes User time A (s) User time B (s)

Mean Variance Mean % m Variance % v

line (1D) 25661 361 0.0002 0.0005 0.0005 60 0.0006 16
561 0.0002 0.0005 0.0005 60 0.0007 28

trui (2D) 2566256 363 0.0540 0.1051 0.0720 25 0.1427 26
563 0.0518 0.1050 0.0756 31 0.1477 28

mr3d (3D) 85685682 36363 0.4251 0.9193 0.6428 33 1.3351 31
76563 0.4133 0.9050 0.6625 37 1.4215 36

98c (4D) 6466462668 3636361 1.0043 2.2155 1.5092 33 3.0263 26
5656363 0.8359 1.7157 1.7012 50 3.3057 48

s1p (4D) 1286128615622 3636363 6.6376 13.8945 10.4750 36 20.6662 32
7656363 6.6174 13.7001 10.6435 37 22.1278 38

526 CHANGMINGSUN
of images and the image dimensionality. The second
column shows the image sizes, and the third column
shows the sizes of local windows used. The remaining
columns are the running times for our new algorithm.
The time measurements were obtained by running the
program hundreds of times and taking the average.
‘‘User time A’’ indicates the time spent on the image
without image boundary padding. ‘‘User time B’’ gives
the time of the algorithm with image boundary padding.
The increase of program running time for ‘‘User time B’’
compared with ‘‘User time A’’ results from two factors:
one is the process of performing space allocation and
data copying for generating a larger image; the second is
that the program is running on a larger image. The
increase of computation time when image padding is
used is shown in Table 2. The column indicated by
‘‘% m’’ shows the percentage of time increase for local
mean calculation. The first two values in this column are
not accurate as the computation time is very short. The
column indicated by ‘‘% v’’ shows the percentage of
time increase for local variance calculation. Therefore,
one should be aware of the cost for processing the pixels
near the image borders. It will save some computation
time by leaving the boundary pixels unprocessed.

The times spent by the program on one image when
using different window sizes are almost the same. That
means the speed of the algorithm is almost invariant to
the local window size. The slight difference is because of
the change of the image size when considering the image
boundary effect. For example, for image mr3d, when the
sizes of local window change from 36363 to 76563,
‘‘User time A’’ reduced from 0.4251 s to 0.4133 s for the
mean calculation. This is due to the reduced effort from
not processing the boundary pixels of the input image.

The computer used was a relatively old 85MHz Sun
SPARCserver1000 running Solaris 2.5. The typical
running time for the algorithm on a 2566256 2D image
is in the order of several dozens of milliseconds.

Conclusions

We have developed a fast algorithm for calculating local
statistics for N-dimensional images. The fast calculation
was realized by using the plunger technique which
recursively reduces the dimensionality of the input
N-dimensional image. The time spent in the stage which
obtains the local statistics is almost invariant to the local
window size. The local mean, variance and skewness
calculation for the N-dimensional image can be per-
formed in one single pass. The typical running time for a
2566256 2D image on an 85MHz computer is in the
order of several dozens of milliseconds.

Acknowledgments

The author thanks the anonymous referees for their
comments and suggestions. We would like to acknowl-
edge Professor David Feng of the University of Sydney
for providing one 4D image and giving comments on the
manuscript. We thank Brian Hutton of the Medical
Physics Department of Westmead Hospital for provid-
ing another 4D image. We are also grateful for Weidong

FAST LOCAL STATISTICS FORN-D IMAGES 527
Cai and Leanne Bischof in helping obtain some other
images. The help from Ryan Lagerstrom in reading the
manuscript is also acknowledged.

References

1. Jain A.K. (1989) Fundamentals of Digital Image Proces-
sing. Pentice-Hall, Englewood Cliffs, New Jersey.

2. McDonnell M.J. (1981) Box-filtering techniques. Compu-
ter Graphics and Image Processing 17: 65–70.

3. Sun, C. (1997) A fast stereo matching method. In Digital
Image Computing: Techniques and Applications, Massey
University, Auckland, New Zealand, December 10–12
1997, pp. 95–100.

4. Sun, C. (1999) Fast optical flow using cross correlation
and shortest-path techniques. In Digital Image Computing:
Techniques and Applications, Perth, Australia, 7–8 De-
cember 1999, pp. 143–148.

5. Sun, C. (1999) Multi-resolution stereo matching using
maximum-surface techniques. In Digital Image Comput-
ing: Techniques and Applications, Perth, Australia, 7–8
December 1999, pp. 195–200.

6. da Fontoura Costa, L. (1999) Gauss’ law in image
processing and analysis via fast numerical calculation of
vector fields. Real-Time Imaging 5: 243–251, doi:10.1006/
rtim.1998.0136.

7. Wu, G.K. & Reed, T.R. (1999) Image sequence processing
using spatiotemporal segmentation. IEEE Transactions on
Circuits and Systems for Video Technology 9: 798–807.

8. Doyen, P.M. (1988) Porosity from seismic data: A
geostatistical approach. Geophysics 53: 1263–1275.

9. Joshi, S. & Miller, M.I. (1993) Maximum a posteriori
estimate with Good’s roughness for three-dimensional
optical-sectioning microscopy. Journal of Optical Society
of America, Part A 10: 1078–1085.

10. Kriete, A., Rohrbach, S. & Schwebel, T. (1992) Data
representation and visualization in 4D microscopy. In
Proc. SPIE Conf. Visual. in Biomed. Comp., volume 1808,
pp. 396–409.
11. Robb, R.A. & Barillot, C. (1989) Interactive display and
analysis of 3D medical images. IEEE Transactions on
Medical Imaging 8: 217–226.

12. Hoffman, E.A., Gnanaprakasam, D., Gupta, K.B.,
Hoford, J.D., Kugelmass, S.D. & Kulawiec, R.S. (1992)
VIDA: An environment for multidimensional image
display and analysis. In SPIE Conf. Biomedical Image
Processing and Three-Dimensional Microscopy, volume
1660, pp. 1–18.

13. Lee J.H. (1992) 4D digital topology and mathematical
morphology. Master’s thesis, The Pennsylvania State
University, University Park, PA.

14. Higgins, W.E. & Lee, J.H. (1993) 4D morphological
processing of cardiac image sequences. In 15th Annual Int.
Conf. IEEE Engin. Medicine & Biology Soc., San Diego,
CA, 28–31 October 1993, pp. 136–137.

15. Wang, A.J. (1995) Cue-based analysis of 4D cardiac
images. Master’s thesis, The Pennsylvania State Univer-
sity, University Park, PA.

16. Higgins, W.E., Wang, A.J. & Reinhardt, J.M. (1996)
Semi-automatic 4D analysis of cardiac image sequences.
In SPIE Medical Imaging 1996: Physiology and Function
from Multidimensional Images, volume 2709, Newport
Beach, CA, 11–13 Feb. 1996, pp. 359–372.

17. Niessen, W.J., Duncan, J.S., Florack, L.M.J., ter
Haar Romeny, B.M. & Viergever M.A. (1995) Spatio-
temporal operators and optic flow. In T.S. Huang
and D.N. Metaxas (eds), Physics-Based Modeling
in Computer Vision, pp. 78–84. IEEE Computer
Society Press.

18. Rohr, K. (1997) On 3D differential operators for detecting
point landmarks. Image and Vision Computing 15:
219–233.

19. Vliet, L.J.V., Young, I.T. & Verbeek P.W. (1998)
Recursive Gaussian derivative filters. In Proceedings of
International Conference on Pattern Recognition, volume I,
Brisbane, Australia, 16–20 August 1998. IEEE Computer,
Society, pp. 509–514.

20. van Herk, M. (1992) A fast algorithm for local minimum
and maximum filters on rectangular and octagonal
kernels. Pattern Recognition Letters 13: 517–521.

	Introduction
	Fast Algorithms for 2D Images
	Figure 1

	Fast Algorithm for nD Images
	Figure 2
	Figure 3

	Experiment Results
	Table 1
	Table 2

	Conclusions
	Acknowledgments
	References

