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Fast Reflectional Symmetry Detection Using
Orientation Histograms

simple and fast reflectional symmetry detection algorithm has been developed in thisApaper. The algorithm employs only the original gray scale image and the gradient
information of the image, and it is able to detect multiple reflectional symmetry axes of

an object in the image. The directions of the symmetry axes are obtained from the gradient
orientation histogram of the input gray scale image by using the Fourier method. Both synthetic
and real images have been tested using the proposed algorithm.
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Introduction w xtion. Burton et al. 2 considered a simple indexing
scheme to implement the exponential pyramid data
It has been proposed that symmetry plays a major role
in object recognition by providing a canonical axis for

w xthe representation of shapes 1 . Many objects around
us are strongly constrained. For instance, many cultural

Žartifacts and natural objects are reflectionally bilater-
.ally or mirror symmetric. A reflectional symmetry has

a reflection line, for which the left half space is a
mirror image of the right half. One of the goals of an
image understanding system is to identify and locate a
specified object in the scene. In such cases, the system
must have some knowledge of the shape of the desired
object. Symmetries are good candidates for describing
shapes. It is a powerful concept that facilitates object
detection and recognition in many situations. These
representations can be used in robotics for recognition,
inspection, grasping, and reasoning.

Most of the work carried out on symmetry detection
has been based on edge, contour or point set informa-
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w xstructure for particular symmetries. Wolter et al. 3
described exact algorithms for detecting all rotational
and involutional symmetries in point sets, polygons and

w x  w xpolyhedra. Atallah 4 and Davis 5 used evaluation
techniques for symmetry detection on images com-

w xposed of line segments, circles and points. Highnam 6
presented an asymptotically optimal algorithm to locate
all the axes of mirror symmetry and optimal algorithms
for finding rotational symmetries of a planar point set.

w xMarola 7 presented an algorithm for finding the num-
ber and position of the symmetry axes of a symmetric
or almost symmetric planar image. This method
required the evaluation of some rational functions. He
also presented a recognition procedure based on the
measurements of the degree of symmetry of planar

w xintensity images by superposition or by convolution 8 .
w xZabrodsky et al. 9 defined a Continuous Symmetry

Measure to quantify the symmetry of objects. They also
w xpresented a multi-resolution scheme 10 that hierar-

chically detects symmetric and almost symmetric pat-
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w xterns. Parry-Barwick and Bowyer 11 developed
methods that can detect both hierarchical and partial

Ž .  w xTI x, y , the surface gradient vector I , I is definedx y
by:

Figure 1. An illustrative shape of the gradient orientation
histogram for a reflectionally symmetric object.
Ž .symmetry of two-dimensional 2D set-theoretic models
with components constructed with a few straight edges
or polynomials. This method had the disadvantage of

w xbeing computationally intensive. Zielke et al. 12, 13
only looked at vertical or near vertical symmetry axes
in an image for car-following applications. Masuda et

w xal. 14 described a method of extracting rotational and
reflectional symmetry by performing a correlation with
the rotated and reflected images. But the method had a
high computational cost and memory requirements.

w xBowns and Morgan 15 presented a method of extract-
ing facial features using natural orientation informa-
tion. But this method is not suitable for general shaped
objects when the peak orientation is not related to the
orientation of the symmetry axis. O’Mara and Owens
w x16 used the directions of the principal axes of an
object as the initial values of the symmetry axis. Sun
w x17 used a direct correlation method on the orienta-
tion histogram to obtain the most likely symmetry axis.

In this article we investigate the use of gradient
information for symmetry detection in a gray scale
image by using the Fourier technique. Our purpose for
using the Fourier method is to increase the computa-
tion speed further compared with the method used in
w x17 . We also try to find multiple symmetry axes in an
object rather than just obtain one of the most likely

w xsymmetry axes, as in 17 . The following sections
describe the gradient orientation histogram, give the
algorithm for finding the orientations and position of
the symmetry axes, and show the results of the algo-
rithm on both synthetic and real images. Comparison
of several existing methods and the method developed
in this paper is also described. The final section pro-
vides some conclusions.

Gradient Orientation Histogram

The image formation includes imaging geometry, sur-
face photometry, and surface contours. The image
itself is often ambiguous in its representation of scene
information, and the interpretation of such an image
requires a combination of analytical tools and knowl-

Ž .edge or assumptions about the scene objects and the
w ximage production 18 . The observed brightness of

objects corresponds to the image irradiance. For our
analysis, we will only consider Lambertian surfaces.
Neither specular reflection nor shadowing effects will
be treated here. For an object surface described by
Ž .  Ž .­ I x , y ­ I x , y
Ž .I s , I s . 1x y­ x ­ y

The orientation of this gradient vector is:

Ž .  Ž .f s arctan I rI . 2y x

w .The domain of f is 0, 2p . It is expected that the
gradient orientation information of an image can be
used for symmetry detection. Details of the method will
be described in later sections. This method can be
misled by the presence of a periodic texture within the

Žobject if the texture pattern does not have the same
.symmetry axis with the object , as these repetitive pat-

terns may give high peaks in the orientation histogram
compared with those from the object’s global shape.
However, as long as the predominant gradient orienta-
tions are symmetric, the algorithm will be able to find
the symmetry axes.

Figure 1 gives an illustrative shape of the gradient
orientation histogram for a reflectionally symmetric
object. The shape should be mirror symmetric, or nearly
mirror symmetric, because of the digitization errors.

Ž .  Ž .Figure 2 a shows a symmetric object, and Figure 2 b
is a circular gradient orientation histogram with the
orientation angle starting from the center-to-right

Ž .direction 08 and increasing clockwise, and the radial
length showing the number of pixels at this orientation
within this image. The line passing through the center

Ž .of Figure 2 b indicates the symmetry orientation. It is
easier for us to perceive the 2p periodicity of
the gradient orientation histogram in this circular
representation.

Orientation and Position of Symmetry Axes

Our algorithm is based on the gradient orientation
distribution of the input gray scale intensity image. It
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Ž .  Ž .Figure 2. A symmetric object and its circular gradient orientation histogram. a An object with reflectional symmetry; b the
Žcircular gradient orientation histogram of the object with the symmetry orientation overlaid the line passing through the

.center .

will also work for binary images in which the useful
gradient information appears at the boundaries of

only one symmetry axis is chosen, by simply selecting
Ž .the maximal value of Eqn 4 . In practice, the integral
objects. From the previous section, the histogram of
this gradient orientation image can therefore be

w Ž .  Ž .xobtained using Eqns 1 and 2 . The range of the
gradient orientation is from 0 to 360 degrees. Users are
able to specify the number of bins for the histogram. In
order to have better angular resolution, the bin number
can be chosen to be some larger numbers than 360. It
can be observed that for a symmetric object in the
image, its orientation histogram is also symmetric. It is
also clear that this histogram function is periodic with

Ž .period 360 or 2p . That is,

Ž .  Ž  .  Ž .h u s h u " 2np n s 0, 1, 2, ??? 3

Ž .where h u is the gradient orientation histogram of the
w . w xinput image, and u is in 0, 2p . Sun 17 used a

window at position x of the histogram with length p
from the left and p from the right to calculate the
following function:

p
Ž .  Ž . Ž .  Ž .c x s h x q u h x y u du 4H

us0

The orientation of the symmetry axis is the value x
Ž .which gives the maximal value for c x . In his paper
in the above equation is approximated by a sum of the
Ž .discretized orientation histogram h i , i s 0, 1, . . . ,

Ž .N y 1. The signal processing operation in Eqn 4 is a
correlation between the segments of the gradient ori-
entation histogram. Since portions of the histogram are
mirror images, a reflection prior to a shift and multiply
is carried out, as is done when performing a convolu-
tion. In this paper we use the Fourier method to obtain

Ž .the symmetry information. The Fourier transform H u
Ž .  Ž .of h i as defined in Eqn 5 will be used to obtain the

convolutions of two signals. In our case, the two signals
Ž .are the same, i.e. h i .

Ny1
Ž .  Ž . � 4H u s h i exp yj2p iurN , u s 0, 1, . . . , N y 1Ý

is0

Ž .5

For a reflectionally symmetric object, its gradient
Ž .orientation histogram h i will be reflectionally sym-

metric or nearly so at one or more orientation angles.
Ž .The convolution of histogram h i with itself will pro-

duce peaks at those symmetry angles. This convolution
can be easily obtained by the Fourier transform. Based
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on the following con¨olution theorem: 1. Perform a gradient operation on the image;
2. Obtain the gradient orientation histogram;
Ž . Ž .  Ž .  Ž .  Ž .f x ) g x m F u = G u  6

the convolution in the space domain can be obtained
by taking the inverse Fourier transform of the product
Ž . Ž .F u G u . By doing so, the computational cost can be

reduced to the order of N log N rather than the2
2 Ž .  Ž .  Ž .order of N . In our case F u s G u s H u . There-

Ž .  Ž .  Ž .  Ž .fore, we have h i ) h i m H u = H u , and we can
2Ž .use the inverse Fourier transform of H u for obtain-

Ž .ing the convolution shown in Eqn 4 , i.e.:

Ž .  Ž . 2 Ž .  Ž .h i ) h i m H u  7

w xWe also extend the work of Sun 17 to the cases
where there exist multiple symmetry axes about the
object. If there are multiple symmetry axes, the convo-
lution function should have multiple peaks. So by set-
ting an appropriate threshold, multiple peak positions
which correspond to the orientations of multiple sym-
metry axes can be obtained.

The accuracy of the orientations of the symmetry
axes obtained by searching the peak positions in the
convolution function can be improved by fitting a
parabola function around the local region of each peak.
The optimal positions of the peaks can be obtained
analytically from the fitted parabola function.

After the directions of the symmetry axes have been
obtained, it is also necessary to determine the position

Žof these lines. The center of gravity of the image or
.the object of interest can be used for determining the

position of the symmetry axes.

The operations for obtaining the symmetry axis
directions and position are the following:
Figure 3. Flow chart of the algorithm for obtaining symmetry ax
3. Search for the convolution peaks of the gradient
orientation histogram by using the Fourier trans-
form to obtain the orientations of symmetry axes;

4. Obtain sub-angular positional accuracy by fitting a
parabola function, and finding the peak position
analytically;

5. Perform symmetry check or evaluation about the
obtained symmetry axes;

6. Obtain the position of this symmetry axis by using
the center of mass of the object; and

7. Draw the symmetry axes based on the orientation
and position information obtained.

The flow chart of the algorithm is shown in Figure 3.

Experimental Results

The results for the described algorithm on both syn-
thetic and real images are given in this section. The
gradient of an image is obtained by using a 5 = 5 Sobel

w xfiltering operation on the input gray scale image 19 .
The filtering splits the kernels into 2 = 1 sub-kernels
and iteratively calculates the responses. The results are
two gradients for the x- and y-directions, respectively.
Then the gradient orientation at this point of the image

Ž .can be obtained by using Eqn 2 . When both I and Ix y
are zero at a point in the image, the gradient at this
point is treated as not defined. By having a set of bins

Ž .in the range of 0, 360 , the orientation histogram of
the image can therefore be obtained. No initial
smoothing was applied to the original image before
the gradient operation, as the process of obtaining the
orientation histogram has the effect of cancelling the
noise contribution.
es.
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Because of the digitization effects, the boundary of
an object consists of mostly zigzagged short line seg-

Figure 4. Sub-angular positional accuracy by finding the peak
of a fitted quadratic parabola equation.

sufficient condition for symmetry detection. That is, for
certain non-symmetric objects, its orientation his-
ments, and very often these line segments are either
horizontal or vertical, with diagonal segments connect-
ing the horizontal or vertical short lines. Therefore, in
most of the gradient orientation histograms, peaks of-

Žten appear at multiples of 458 08, 458, 908, 1358, 1808,
.2258, 2708 and 3158 . This effect can be reduced by

increasing the kernal size in the gradient operation to
some extent. However, it is hard to eliminate the effect
completely just by increasing the kernel size. The his-
togram is circularly smoothed with a median filter of
size 5; that is, the smoothing window is wrapped around
at the ends since the angular data are circularly contin-
uous. The convolution peaks are found from the
smoothed data. Only those peaks that are within 90%
of the maximal value are chosen. The positions of the
peaks are further refined by fitting a quadratic function

Ž .around the local region say five points of each peak.
The refined positions are obtained analytically by find-
ing the maximal value of the quadratic function. There-
fore, higher angular resolution can be obtained. The
general form of the quadratic parabola equation is:
Ž . 2f x s a q b ? x q c ? x . The maximum can be found

where the slope is zero in the quadratic equation. The
position of the peak can be found at x s ybr2c, as
illustrated in Figure 4.

The histogram property is a necessary but not a
Ž .  Figure 5. a A counter-example when the proposed algorithm
Ž .where g s a q b s c q d .
togram might still be reflectionally symmetric. One
Ž .example is shown in Figure 5. Figure 5 a shows a

Ž .non-symmetric object, while Figure 5 b displays its
idealized gradient orientation histogram. Although the
orientation histogram is reflectionally symmetric, the
object does not have the reflectional symmetry prop-
erty. However, as long as we know that the object in
the image is reflectionally symmetric, we can apply the
algorithm to detect reflectional symmetries. If the con-
dition is not sufficient, i.e. when the orientation his-
togram shows a reflectional symmetry but the actual
object is not reflectionally symmetric, a further step
might be necessary to check whether the object is
Ž .  Ž .might not work; b The ideal orientation histogram for a
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Ž . Ž .Figure 6. a Two symmetry axes were initially detected; b the incorrect symmetry axis was eliminated.

Figure 7. Symmetry detection result. Two symmetry axes have been detected by searching the high peaks in the convolution
Ž . Ž . Ž .function. a Original image and the symmetry axes obtained; b gradient orientation image normalized from 0]360 to 0]255 ;

Ž . Ž . Ž .c median smoothed histogram of the gradient orientation image b ; and d the convolution function obtained using Fourier
transform.
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Ž . Ž .Figure 8. Symmetry detection results for several synthetic images. a A range image of an adapter; b a range image of a half
Ž . Ž . Ž . Ž .sphere; c a square with four symmetry axes; d an aeroplane; e a telephone; and f a rotated human face.
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Ž . Ž .Figure 9. Symmetry detection. a an original image with the detected symmetry line overlaid; b the gradient orientation
Ž .histogram; and c the convolution function obtained from Fourier transform.

Ž . Ž .Figure 10. Symmetry detection process for a real image. a Original image and the symmetry axis obtained; b the convolution
function obtained from the inverse Fourier transform. The symmetries are obtained by searching the peaks of this function.
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actually reflectionally symmetric or not. These parame-
ters or symmetry hypothesis can be verified by obtain-

function. There is only one peak within 90% of the
maximum value. Figure 10 illustrates the steps for
Ž w xing a symmetry measure see Zabrodsky et al. 9 or
w x.O’Mara and Owens 16 . If this symmetry measure

gives a low value, we say that the object is not symmet-
ric. If an object is convex, the histogram property will
not only be a necessary, but also a sufficient condition
for symmetry detection. Figure 6 gives an example of a
non-convex object. In this image, two symmetry axes
were initially detected. One of the incorrect axes was
eliminated after considering the symmetry measure.

Ž .Figure 7 a shows an original image and the symme-
Ž .try axes obtained; Figure 7 b is the gradient orienta-

tion image normalized from 0]360 to 0]255 for display
Ž .purposes; Figure 7 c gives the histogram of the gradi-

Ž .  Ž .ent orientation image b ; and Figure 7 d shows the
convolution function of the histogram obtained by
using the Fourier method. The two high peaks corre-
spond to the two symmetry axes. Figure 8 shows the
results of the symmetry detection algorithm on several
synthetic images. Figure 9 gives another example of

Ž .symmetry detection. Figure 9 b is the gradient orienta-
Ž .tion histogram, and Figure 9 c is the convolution
Figure 11. Symmetry detection for two noise added synthetic im
Ž .25% noise added to the image of Figure 8 f .
obtaining the symmetry axes for a real image, an image
Ž .of Jupiter. As shown in Figure 10 b , there are two

peaks that are within 90% of the maximal value. The
symmetry evaluation step indicates that the symmetry

Ž w x.measures using the measure described in 16 for
these two peak positions are very similar. Although our
human perception may prefer to choose the axis run-
ning from the top of the image to the bottom of the

w Ž .ximage see Figure 10 a , the algorithm actually gives a
slightly stronger symmetry measure for the other axis.
After careful examination about the image we find that
the change of intensity in the image around the left
boundary of Jupiter is smaller than the change around
the right boundary of Jupiter. It is this difference in the
change of intensity that makes the algorithm pick up
two symmetry axes. Figure 11 shows the results of the
algorithm on two noise added synthetic images. The
symmetry axes are very close to the ones obtained in
the noise free images. Figure 12 gives the results of the
algorithm on some real images.

The typical CPU running time for a 256 = 256 image
Ž .  Ž .  Ž .ages. a 25% noise added to the image of Figure 8 a ; and b
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Ž . Ž . Ž . Ž .Figure 12. Symmetry detection results for several real images. a Welcome gate; b slice of CT x-ray image; c ceramic; d
Ž . Ž .human face; e square pattern; and f fluctuating crosses.
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is less than 0.1 s on a Sun Sparc10. The time spent on
the calculation of symmetry orientation from the

Conclusions
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from his book: Visual Allusions: Pictures of Perception,
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