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Abstract— Shortest path algorithms have been used in a
number of applications such as crack detection, road or linear
feature extraction in images. There are applications where the
starting and ending positions of the shortest path need to be
constrained. In this paper, we present several new algorithms for
the extraction of a circular shortest path in an image such that
the starting and ending positions coincide. The new algorithms
we developed include multiple search algorithm, image patching
algorithm, multiple backtracking algorithm, the combination
of image patching and multiple back-tracking algorithm, and
approximate algorithm. The typical running time of our circular
shortest path extraction algorithm on a 256×256 image is about
0.3 seconds on a rather slow 85MHz Sun SPARC computer. A
variety of real images for crack detection in borehole data, object
boundary extraction, and panoramic stereo matching have been
tested and good results have been obtained.

Keywords: Circular shortest path, Dynamic programming,
Multiple search algorithm, Image patching algorithm, Multiple
backtracking algorithm, Combination algorithm, Approximate
algorithm.

I. INTRODUCTION

In a weighted graph or network, it is frequently desired
to find a shortest path between two nodes. The shortest path
is defined as a path from one node to the other such that
the sum of the weights of the arcs on the path is minimised.
Most algorithms or applications in the graph framework use
a labeling approach, in particular the one due to Dijkstra [1],
[2].

Buckley and Yang developed a regularised shortest path
extraction algorithm for rectangular images [3]. The algo-
rithm uses dynamic programming (DP) techniques for shortest
path extraction. They applied their algorithm to borehole
data/image for crack detection and also to satellite images
for road extraction. The shortest path they are interested in
is either the path running from top to bottom or left to right.
There is no constraint on the starting and ending positions of
the path. A number of authors used dynamic programming
technique to obtain a shortest path in a rectangular matrix
for stereo disparity measurement [4], [5], [6], [7]. All these
applications impose no constraints on the starting and ending
positions of the shortest path.
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In the applications of inspection of open or equipped
boreholes, borehole geophysicists record and analyse measure-
ments of physical properties made in test holes. Probes that
measure different properties are lowered into the borehole to
collect continuous or point data that is graphically displayed as
a geophysical log. Borehole geophysics is also used in ground-
water and environmental investigations to obtain information
on well construction, rock lithology and fractures, permeability
and porosity, and water quality [8], [9]. These applications
include fracture identification and orientation, stratigraphic
and structural dip analysis. The borehole acoustic televiewer
resembles an optical television camera system in producing
a full 360◦ image of the borehole walls. The signals are
presented as continuous images. In certain situations, the input
images wrap around, e.g. the left and the right edges are
actually neighbouring columns. Figure 1(a) shows a full 360◦

borehole image with cracks in it. As the image is a 360◦

circular image, the left and the right boundaries of the image
are actually neighbouring columns. This image can be shown
in a cylindrical format as in Figure 1(b). In the example shown
in the figure, a closed or circular shortest path should be
extracted. That is the starting and the ending positions of the
path should be at neighbouring points.

In some image analysis applications, object boundaries need
to be extracted [10]. In these applications, it is necessary to
make sure that the boundary extracted are closed contours.
Panoramic stereo images are becoming available for 3D ap-
plications. In 360◦ panoramic stereo images, the left and the
right columns are connected with each other. Therefore in the
stereo matching process, it is necessary to take this constraint
into account. This can be achieved by obtaining a circular path
in the correlation coefficient matrix.

In this paper we address the issue of obtaining a circular
shortest path in an image or a regular grid for a number of
applications. The rest of the paper is organised as follows:
Section II gives a brief review for ordinary shortest path ex-
traction algorithms. Section III presents five new methods for
circular shortest path extraction on images. Section IV shows
the experimental results obtained using our circular shortest
path extraction methods applied to a variety of applications.
Section V gives concluding remarks.
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Fig. 1. (a) A 360◦ borehole image with cracks; (b) Image in (a) shown in a cylindrical format.

II. ORDINARY SHORTEST PATH ALGORITHMS: A BRIEF

REVIEW

This section gives a brief review on ordinary shortest path
extraction algorithms using labeling algorithms and dynamic
programming. The problem is to find a path from the left side
to the right side of an image or grid such that the cost of the
path is minimum. The cost of the path is the sum of the costs
along the path. As an example, Figure 2 illustrates the possible
positions that a path from left to right can go from a point to
its neighbours on the grid. “B” is a point on the top boundary
of the image; and “B2” and “B3” are the possible positions a
path can arrive from point “B”. The cost of an arc in an image
or regular grid is defined as the value of its starting position.
For the arc connecting “B” and “B3”, the cost of the arc is
the image value at position “B”. If a point is not on the top
or the bottom boundary (e.g. “A”), there will be three possible
positions (“A1”, “A2”, “A3”) that the path can go from point
“A”. If the top and bottom rows are also neighbours, “B1” is
also a possible position for a path to reach from point “B”. If
only the left and the right columns of the grid are neighbours,
we can wrap the grid on to a cylindrical surface, so that the
left and the right columns are connected. If the top and the
bottom rows are also neighbouring rows, we can imagine to
bend the cylindrical shape to make the top and bottom touch,
so that a toroid shape is formed.

A. Shortest Path Extraction Algorithm

A huge number of scientific papers are devoted to the
shortest path problem. We refer to [1], [2] for a general view
of the problem and of the most efficient algorithms proposed.

Let G = (N,A) be a directed graph, where N is the set of
nodes of cardinality n, and A is the set of arcs of cardinality
m. With each arc (i, j) ∈ A, a cost cij is associated. Given an
origin, or root, r, the shortest path tree problem consists of
finding a spanning directed tree T ∗ rooted at r such that, for
each i ∈ N , the path from r to i in T ∗ is a minimum cost path
in G. The tree T ∗ is a particular collection of shortest paths
Pri, for every i 6= r. Given the root, r, and the destination node
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Fig. 2. Neighbour points that a path can go from “A” and “B” to certain
points in the next column.

s the single pair shortest path problem consists of finding a
minimum cost path Prs from r to s in G.

The single pair shortest path problem is not easier than
the shortest path tree problem, at least for the computational
analysis; in fact, in the worst case, to find Prs one has to
build the entire tree T ∗. Almost all the algorithms have a
common scheme: starting from an initial tree T , the algorithms
iteratively update it until T ∗ is found. To each node i ∈ N , a
label di is associated, providing the cost of the path from r to
i, belonging either to the current tree or to a previous one; for
that, di is in general an upper bound of the cost of the path
in the current tree T .

The labels allow to compare pair of paths; let (i, j) be an arc
and Pri and Prj be two paths of cost di and dj , respectively.
The cost of path Pri ∪{(i, j)} is di + cij ; if the two costs are
such that

di + cij ≥ dj ,

we say that the Bellman’s condition for arc (i, j) is satisfied;
otherwise Pri ∪ {(i, j)} results to be better than Prj , and by
changing the predecessor node of node j, say p(j), in the tree
T , with the node i, we remove from T the arc (p(j), j) and
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we insert (i, j).
A node i for which it is possible that the Bellman’s

conditions are not satisfied for all the arcs (i, j) outgoing from
it is said a scan eligible node. The algorithms handle a set
of scan eligible nodes Q in such a way that the algorithm
iteratively select one of its node to check all the outgoing arcs
to try to improve the current tree T . It is proved that, when
the Bellman’s conditions are satisfied for all the arcs, then the
current tree T is the minimum cost one.

A typical iteration is the following:

select and remove a node i from Q
for each (i, j) outgoing from i such that di + cij < dj do

begin
dj := di + cij ;
p(j) := i;
if j /∈ Q then Q := Q ∪ {j}

end

The Dijkstra-like approach is obtained when the node se-
lected at the beginning of each iteration is the one with the
minimum label among the nodes belonging to Q:

i = argmin{dv : v ∈ Q}.

When the arc costs are non-negative, the Dijkstra’s selection
ensures that every node will be inserted into, and removed
from, Q exactly once; so, the total number of checks of
the Bellman’s conditions is m. The costly operation is the
selection of the minimum label node i which has to be repeated
n times. To speed-up these operations, special data structures,
such as heaps and/or buckets, are used to implement Q.

The Dijkstra-like approach is particularly suitable for the
single pair shortest path problem; in fact, it is easy to prove
that once the destination node is selected from Q, the shortest
path Prs has been obtained. Another possible speed-up is to
work with path searches in parallel, the first starting from r and
the other starting from s and moving “back” along the arcs:
when a node has been selected from both the scan eligible
sets, with few additional operations the minimum cost path is
obtained [11].

A special method is used when the directed graph G is
acyclic, i.e. when the nodes i ∈ N can be re-numbered in
such a way that for every arc (i, j) ∈ A it is i < j. In this
case the shortest path problem is easily solved by examining
the nodes according to the natural order i = 1, . . . , n, and for
each of them apply the following typical iteration:

for each (i, j) outgoing from i such that di + cij < dj do
begin

dj := di + cij ;
p(j) := i

end

Regardless of the sign of the arc costs, the number of
operations grows linearly with m, i.e. the number of arcs. So,
it is the most efficient algorithm for acyclic graphs.

The computation shown above is organised in a “forward”
form. That is for a given node i, all the nodes in the next
layer connected to i are checked and, possibly, updated. The

same computation, following the same nodes order, can be
done in “backward” form, by directly applying the Bellman’s
equation:

dj := min{di + cij : (i, j) enters j}, j = 2, . . . , n. (1)

The “backward” approach on acyclic graphs leads to the
classical dynamic programming algorithm. In later sections
of the paper, we will use the “backward” approach, i.e. the
dynamic programming algorithm, for shortest path extraction.

B. The Grid Structure

The shortest path problem in the grid is a problem on an
acyclic graph. In fact, from an array of u rows and v columns,
we can derive a directed graph G = (N,A), where each node
i ∈ N is a pair [h(i), k(i)] where h(i) indicates the row and
k(i) indicates the column of the element represented by i. The
number of nodes is n = uv.

An arc (i, j) ∈ A exists if k(j) = k(i) + 1 and h(j) =
h(i) + α, where α = −1, 0, 1 but the extreme cases in which
h(i) = 1 or = u; the cost of arc (i, j) is set to the entry
associated to the pair [h(i), k(i)], i.e. all the arcs leaving node
i have the same cost, and it is the value at position [h(i), k(i)].
The total number of arcs is m = (3u− 2)(v − 1) < 3n if the
top and the bottom rows are not connected. If the top and the
bottom rows are connected, m = 3u(v − 1) < 3n.

With this transformation the shortest path problem on the
grid is mapped into a shortest path problem on a classical
graph. By using this transformation, we can see that our
problem has another special characteristic: the graph G is a
stable acyclic sequential layered graph. A graph is stable and
layered if the set of nodes N can be partitioned into subsets
(layers) such that there exist arcs between nodes belonging to
different layers and do not exist arcs between nodes belonging
to the same layer; moreover, it is sequential if the layers can
be ordered in a sequence {L1, L2, . . . , Lv} in such a way the
arcs connect two adjacent layers. Finally, it is acyclic when
the arcs go only from nodes of a layer to nodes belonging
to the following layer. Our graph has indeed these properties
(and others that we will exploit later), in fact each column of
the grid is a layer and the arcs go from one column (layer) to
the following one.

Let us suppose that we have to solve the shortest path
problem from the nodes in layer L1 to the nodes in the last
layer Lv . The best approach is to exploit the characteristics
of the graph by analysing one layer at a time and, for each
node j of that layer, by setting the optimal label value dj by
applying the Bellman’s equation (1). The resulting algorithm,
based on the direct application of the Bellman’s equation (1),
is

Procedure Layer Grid():
begin {initialising the labels of nodes of L1}

for each j ∈ L1 do
begin

dj := 0;
p(j) := nil;

end
for h := 2 to v do
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for each j ∈ Lh do
begin {working on layer Lh}

dj := min{di + cij : (i, j) enters j};
p(j) := argmin{di + cij : (i, j) enters j}

end

end.

III. CIRCULAR SHORTEST PATH

The algorithms described in the previous section for ordi-
nary shortest path extraction impose no constraint about the
starting and ending position of the path. From now on, we
assume that the image or grid is circular, that is the first
and the last columns are neighbours. In this section, we will
present several new algorithms for circular shortest path (CSP)
extraction where the starting and the ending positions of the
obtained path are connected. A circular path is a path from the
first column to the last column when the starting and ending
position are connected. A circular shortest path is a circular
path when its cost among all the circular paths are minimum.
Figure 3 gives an example showing the different paths obtained
using the ordinary shortest path and a circular shortest path
extraction algorithm (to be described later). The “*” symbols
in the figure indicate the positions of the shortest paths. The
cost for the ordinary shortest path is 666, while the cost for
the circular shortest path is 702. The path obtained using the
ordinary shortest path technique is shown in Figure 3(a). The
positions of the paths are: (Ba) → (Bb) → (Bc) → (Cd) →
(De) → (Df) → (Dg) → (Dh) → (Ei) → (Fj) → (Ek) → (Fl).
The capital letters indicate row numbers and the lower case
letters indicate column numbers. The starting position (Ba) and
the ending position (Fl) are not directly connected. The path
obtained using the circular shortest path technique is given in
Figure 3(b). The positions of the paths are: (Da) → (Eb) →
(Ec) → (Fd) → (Ee) → (Df) → (Dg) → (Dh) → (Ei) → (Fj)
→ (Ek) → (El). The starting and ending positions (Da) and
(El) are actually neighbouring points.

A. Multiple Search Algorithm

To find the required circular shortest path, one can run the
ordinary shortest path algorithm for acyclic graphs u times
(u is the number of rows in the image or grid), one for each
node [h, 1] of the first column as origin. Once computed the
shortest paths for all the nodes of the last column, we select
as the best circular shortest path the least cost path among the
ones terminating at the nodes [h−1, v], [h, v] and [h+1, v] (to
satisfy the constraint that the starting and ending positions are
neighbours). At the end of the u shortest path computations,
we can select the path with the least cost to be our result. This
is our multiple search algorithm (MSA).

Figure 4 shows that for any particular given position “C”
on the left boundary of the image, the three possible ending
positions which are essentially neighbours of “C” are “C1”,
“C2” and “C3”. If the dark positions of the image are assigned
to have large values, ordinary dynamic programming technique
can be used to find the required shortest path starting from
point “C” and ending at one of its “neighbouring” points
(“C1”, “C2” or “C3”). We also need to change point “C”
and “C1”, “C2” and “C3” to all the other positions on the

left column and right column, and find all the corresponding
paths. Each of the path has a cost associated with it. The
one which has the minimum cost is the path that we want to
extract.

The steps of our MSA algorithm for circular shortest path
extraction are:

1) Set the start position “C” from the top row of the image.
2) Assign special values to the dark positions of the left

and the right boundaries of the input image as shown in
Figure 4.

3) Perform ordinary shortest path extraction using DP on
the modified image.

4) Record the cost of the path, and select the current least
cost path as the result.

5) Move to the next row of the image and go to Step 2
unless the current row is the last.

6) Display circular shortest path.

This method will guarantee to find the path which satisfies
our constraints. The disadvantage of this method is that the
ordinary shortest path algorithm for acyclic graphs has to be
run u times. Therefore it has a time complexity O(u2v).

B. Image Patching Algorithm

In this subsection we will present a fast algorithm for
obtaining the required circular shortest path by working with
patched images. We call this the image patching algorithm
(IPA).

The size of the patches could depend on the type of
applications or the content of the images. If an image contains
strong circular paths, the starting and ending positions of a
shortest path obtained by just using the ordinary dynamic pro-
gramming technique may not be too far from the constrained
circular shortest path. In this situation, the size of the patches
needed can be small. Otherwise, if an image contains weak
circular paths, the starting and ending positions of a shortest
path obtained by just using ordinary dynamic programming
technique may be far from a constrained circular shortest path.
In this case, a stronger constraint, or larger size of patches may
be needed.

Figure 5 shows the image patching process for obtaining
the circular shortest path. Patch-1 and Patch-2 are parts of
the original image. Copy-of-Patch-1 and Copy-of-Patch-2 are
copies of the image regions Patch-1 and Patch-2. These
two copies of the local image regions are attached to the
original image to build a larger image. Image patching is only
performed in the X-direction of the image, as we need to find
the circular shortest path from left to right of the image. If a
shortest path from top to bottom of the image is needed, the
patching can be done at the top and the bottom of the image.
Figure 5(a) illustrates the patching process, and Figure 5(b)
is an example of a patched image. Dark lines are drawn in
Figure 5(b) to show the image boundaries. The left side of the
first dark line is the same region for Patch-2. The right side
of the second dark line is the same region for Patch-1.

The image patching method does not guarantee to find
the required path. However many synthetic and real image
tests all produce correct results. If a circular shortest path
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a b c d e f g h i j k l

A 252 245 74 13 219 171 193 242 17 203 72 123
B *160 *83 *23 103 71 214 174 30 31 58 197 117
C 202 117 157 *90 202 102 104 235 104 6 215 99
D 161 143 231 127 *20 *20 *63 *39 180 178 69 108
E 210 63 64 192 28 36 130 170 *29 246 *54 84
F 235 83 129 66 233 237 41 147 190 *31 140 *54
G 176 208 255 0 173 17 252 205 197 212 131 245

(a)

a b c d e f g h i j k l

A 252 245 74 13 219 171 193 242 17 203 72 123
B 160 83 23 103 71 214 174 30 31 58 197 117
C 202 117 157 90 202 102 104 235 104 6 215 99
D *161 143 231 127 20 *20 *63 *39 180 178 69 108
E 210 *63 *64 192 *28 36 130 170 *29 246 *54 *84
F 235 83 129 *66 233 237 41 147 190 *31 140 54
G 176 208 255 0 173 17 252 205 197 212 131 245

(b)

Fig. 3. Examples showing the different paths obtained using ordinary and circular shortest paths. The values in the table are randomly generated. It is
assumed that the column “a” and column “l” are neighbouring columns. (a) Shortest path without constraint. The starting and ending positions (Ba) and (Fl)
are not neighbours. (b) Shortest path with constraint, i.e. circular shortest path. The starting and ending positions (Da) and (El) are neighbours.

C3

C2C

C2

C1

C

C3

C2

C1

C

Fig. 4. Constraining the ordinary shortest path search.

is not found, we can iterate the process of finding circular
shortest path by using a different size of the patch, or using
a multiple back-tracking algorithm (MBTA) to be described
in the following subsection. Or if the application is not time
critical, the MSA method can be used. The main advantage
of the IPA algorithm is its speed, as it only needs one run of
the ordinary shortest path extraction algorithm on the patched
image. The complexity of the algorithm is O(u(v+k)), where
k is the width of the added patches.

The steps of our image patching algorithm for circular
shortest path extraction are:

1) Patch the input image on the left and the right sides
with portions of the input image itself (say one-eighth
of the image width). The size of the patches depends on
the application. If the path is strong or very clear in the
image, the size of the patches can be smaller. Otherwise,
the width of each patch can be set to half of the width
of the input image.

2) Perform ordinary shortest path extraction using DP on
the patched image.

3) Extract the shortest path which lies inside the original
image.

4) Check if the obtained path satisfy the circular constraint.
If so, go to Step 5; otherwise, go to Step 1 with a

different patching size, or using MBTA or MSA.
5) Display circular shortest path.

C. Multiple Back-tracking Algorithm

In this subsection we will present another algorithm based
on the ordinary shortest path algorithm by performing multiple
back-tracking. We call it the multiple back-tracking algorithm
(MBTA). When carrying out the ordinary shortest path ex-
traction using dynamic programming, we have in storage the
cost value for each node and the corresponding predecessor
matrix. From each node on the last column, we can back-track
a path from this node to a certain node on the first column.
This path has a certain cost. If the starting and the ending
positions of this path are neighbours, then we say this path
is a possible CSP. We back-track all the nodes on the last
column, and we may find several possible CSPs. We can then
choose the CSP with the minimum cost as the final result. We
have found that on an image or regular grid one can almost
always find a circular path although this circular path may not
be the circular shortest path.

To speed-up the phase of checking whether a path is a
circular one, it is possible to associate to every node [h, k],
together with the label dh,k and the predecessor node p(h, k),
also the knowledge of the first node [r′, 1] of the current path



6 PATTERN RECOGNITION, VOL. 36, NO.3, PP.709-719, MARCH 2003.

C
o

p
y-

o
f-

P
at

ch
-2

P
at

ch
-1

P
at

ch
-2

C
o

p
y-

o
f-

P
at

ch
-1

Image Size After Patching (in X-direction)

Original Image Size (in X-direction)

(a)

(b)

Fig. 5. Image patching for fast circular shortest path extraction. (a) Drawings
showing the patching process; (b) Illustration using a real image. Dark lines
in this image are artificial. It is used to show the region boundaries.

ending into [h, k]. In fact, we introduce, for every node [h, k],
the first node function f(h, k). To do that, it is enough to
initialise f(h, 1) = h, h = 1, . . . , u, and each time the label
of [h, k] is improved from a node [h′, k − 1], it is enough to
set, together the predecessor p(h, k) := h′, also the first node
f(h, k) := f(h′, k − 1).

Then, at the end, when the minimum label node [s′, v] is
selected, the first node [r′, 1], with r′ = f(s′, v), is available
without moving back along the minimum cost path.

Figure 6 shows the results of the circular shortest path ex-
traction using the multiple backtracking algorithm. Figure 6(a)
is the input random image; Figure 6(b) is a matrix (first node
function) containing information for each pixel as to which
point in the first column it is connected to; and Figure 6(c)
shows the CSP obtained overlaid on the input image.

It can be observed from Figure 6(b) that with the increase
of the column index of the image, the number of colours
decreases. This means that the possible number of circular
shortest path is reduced. For a very thin image, the shape
of the first column matrix is similar to that of the left
part of Figure 6(b). One may have many possible circular
shortest path. For a very long image, the number of colours
connected to the right edge of the image is smaller. Therefore
the possible number of circular shortest path is smaller. The
MBTA algorithm guarantees to find a circular path. But this
circular path may not be the circular shortest path.

The steps for our MBTA algorithm are:

1) Carry out ordinary dynamic programming to build the
cost matrix, and the predecessor matrix.

2) Carry out back-tracking from each node on the last
column and record the cost for a circular path.

3) Choose a circular path with the minimum cost as the
result of this algorithm.

D. Combination Algorithm

The IPA algorithm provides a fast way of finding “circular”
shortest paths. But the path obtained is not always circular. The
MBTA algorithm guarantees to find a circular path, although
this path may not be the circular shortest path. We can combine
these two algorithms as the IP&MBTA algorithm to increase
the chance of finding the true circular shortest path in an image
or grid. This will involve running each of the IPA and MBTA
algorithms once. That is using the IPA algorithm to find a
path, if this path is not circular, we use the path obtained
by the MBTA algorithm. If the path obtained from running
the IPA algorithm is circular, we choose the path with the
minimum cost from the IPA and the MBTA algorithms. Many
real images tests have shown that the combination algorithm
produces all the correct circular shortest path.

E. Approximate Algorithm

In most real cases it is enough to heuristically find a circular
path, not necessarily optimum, to correctly process the image.
The key point is to guarantee that the best circular path found
by the heuristic is not far, in terms of “cost”, from the optimal
circular path. To ensure that the “sub-optimal path” is “good
enough” we would limit the relative error.

More formally, let z∗ (> 0) be the (unknown) cost of the
optimal circular path and let z(A) the cost of the best path
P (A) found by a given approximate algorithm A. Of course
z(A) ≥ z∗. We say that the relative error E(A) of path P (A)
is:

E(A) =
z(A) − z∗

z∗
.

To define a bound on the relative error it is enough to find
a so-called “lower bound” of the unknown optimal solution,
i.e. a not necessarily feasible solution whose cost z′ is such
that z′ ≤ z∗. If that solution is a feasible circular path, then it
is an optimal solution for the problem. By knowing z(A) and
z′ we have a “threshold value”:

B(A) =
z(A) − z′

z′
,

which bounds the relative error of path P (A), i.e. E(A) ≤
B(A).

To find a solution which is a lower bound for the circular
path problem is enough to solve the shortest path problem from
any node of the first column to any node of the last column.
That path may not be circular, and in this case it cannot be
taken as a solution; nevertheless, its cost z′ is a lower bound
for the optimal solution.
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(a) (b) (c)

Fig. 6. A random image and its circular shortest path. (a) a random image; (b) A matrix showing each pixel connected to a point on the first column; and
(c) CSP overlaid on the random image.

To find such a path it is enough to apply the shortest
path algorithm for acyclic graphs by setting to zero the label
associated to every node [h, 1] of L1, h = 1, . . . , u, and to
explore all of their outgoing arcs. Once examined all the nodes
of all the layers, the shortest path can be found by inspection
of the last layer Lv: we select the node [s′, v] with minimum
label:

[s′, v] = argmin{di,v : i = 1, . . . , u}.

Then z′ = ds′,v. Moving back, through the predecessor
function, from [s′, v] to the origin node in the first layer, say
[r′, 1]. If the path from [r′, 1] to [s′, v] is a circular one, that
is, if |r′ − s′| ≤ 1, then the relative path is the minimum
cost circular path; so, the optimal solution for our problem
has been found. Otherwise, z′ results to be a lower bound of
the optimal solution value.

To build an approximate circular path we suggest firstly
to check among the shortest paths already generated and, if
necessary, to solve other shortest path problems to extract a
circular path whose cost results are of enough quality to be
selected as an approximate solution.

More in detail, as far as the shortest paths used to set nodes
s′ and r′ = f(s′, v), since the shortest path from r′ to s′ is not
circular, we repeat for every other node [h, v] the same check
|f(h, v)−h| ≤ 1, that is to check whether a circular path has
been created. If there exists at least one circular path, we store
the best one, which is not necessarily the optimum one. Let
call P (A) that path and denote by z(A) its cost. Now we can
evaluate the bound B(A) for the relative error (that bound is
∞ if no circular paths exist).

If that bound fits with the pre-defined accuracy that we
require for a circular path to be chosen as an approximate
solution for our problem, we will use P (A). Otherwise, we
select a given starting node [h̄, 1] and we re-compute the
shortest path tree from that node. At the end, we select the
minimum label node amongst [h̄ − 1, v], [h̄, v] and [h̄ + 1, v];
this gives the best circular path having [h̄, 1] as starting node.
Again, if the path passes the required quality test, it is chosen
as P (A), otherwise another starting node [h̄, 1] is chosen and
the process is repeated. In the case of t iterations, the time
complexity of the approximate algorithm is O(tuv).

The approximate algorithm can be viewed as a special case

of MSA or MBTA when the search for the circular shortest
path can stop early. The predefined approximation accuracy
may not always achieved even all nodes in the last column
are checked in the Approximate Algorithm. This is particular
true when the gap between the cost of the shortest path and
the cost of the circular shortest path is large.

IV. EXPERIMENTAL RESULTS

This section shows some of the results obtained using the
methods described in this paper. A variety of images have been
tested, including synthetic images and different types of real
images.

A. Borehole Data

To compare the different shapes of shortest path obtained
using the ordinary and the circular shortest path algorithms,
ordinary dynamic programming algorithm is applied to the
borehole image shown in Figure 1(a). The ordinary shortest
path obtained is shown in Figure 7(a). The result of our circular
shortest path obtained by using the combination algorithm is
given in Figure 7(c). Notice the position difference of the
shortest paths close to the left edges of Figure 7(a) and (c).
Figure 7(b,d) show the 360◦ version of the flat 2D images. It
is clear that the path obtained using the circular shortest path
method has the same starting and ending position as shown in
Figure 7(d) while the path obtained using the ordinary shortest
path extraction technique does not join up together at the
starting and the ending positions as shown in Figure 7(b).

B. Boundary Detection

du Buf et al described their first results on diatom contour
extraction in [10]. In a preprocessing step initial contours
are extracted using a conventional edge-following algorithm
like Canny’s. The object contours are extracted by using the
best-fitting ellipse and a subsequent contour following in the
elliptical polar-transformed image. They applied a depth-first
search algorithm which evaluates the grey level changes along
the path in the polar-transformed image.

Similar to du Buf et al’s algorithm, we obtain some initial
positional information about a closed contour. In our case,
however, we only need to know the approximate position of
the contour. Then the input image is transformed into the
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(a) (b)

(c) (d)

Fig. 7. (a) A borehole image with a crack; The white path is obtained using an ordinary shortest path extraction algorithm without circular constraint. (b)
Image in (a) shown in a cylindrical format. The starting and ending positions do not meet. (c) The white path is obtained using the algorithm developed in
this paper which has the constraint that the path is circular. (d) Image in (c) shown in a cylindrical format. The starting and the ending points meet each other.

polar coordinate system. Our circular shortest path algorithm is
applied to this transformed image and a circular shortest path
is extracted. The starting and ending positions of this obtained
contour are neighbouring points. If we transform this obtained
path from polar coordinate to the original Cartesian coordinate,
a closed contour can be guaranteed. Figure 8 shows two
examples of finding the boundaries of an object. Figure 8(a,d)
are the input images. Figure 8(b,e) are the circular shortest
path obtained in the polar coordinates. Figure 8(c,f) show the
closed object contours.

C. Panoramic Stereo Matching

Correlation based methods are very common for stereo
matching. Usually a correlation matrix is obtained for each
horizontal pair of scanlines from the left and the right stereo
images, and a shortest path is obtained in this correlation
matrix for disparity estimation. When performing panoramic
stereo image matching, it is necessary to take the constraint
that the left and the right columns of the stereo images are
actually neighbours into account. We can use one of our
circular shortest path extraction algorithms to obtain a CSP
in a correlation matrix from panoramic stereo images. This

obtained CSP will ensure that the starting and the ending
position of the path are connected. The first two images in
Figure 9 are the left and the right panoramic stereo images; and
the third image in Figure 9 is the disparity map obtained using
the IP&MBTA algorithm for circular shortest path extraction.

D. Running Times

Table I shows the computation time of different algorithms
for obtaining circular shortest path on different images. The
computer used was a rather slow 85MHz Sun SPARC. All
the algorithms except the MSA are very fast and takes in the
order of 0.3 seconds. The timing was obtained by running the
algorithms on random images several hundreds of times and
taking the average.

V. CONCLUSIONS

We have developed several new algorithms for finding a
circular shortest path in an image. These algorithms have
applications in borehole image analysis, object boundary de-
tection, and panoramic stereo matching. The circular shortest
path obtained in the image ensures that the starting and ending
positions are connected. The five algorithms we developed are
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Results of boundary extraction using circular shortest path extraction. (a) An image with a circular contour; (b) Transformed image from Cartesian
coordinate to polar coordinate. The white line shows the circular shortest path extracted using the patching method. (Image was rotated by 90 degrees). (c)
The recovered image from the polar image. The white line is a closed contour. (d) Image of an Actinocyclus diatom (unicellular algae). (e) Polar transformed
image with circular shortest path overlaid. (f) Image shown the closed contour detected.

Fig. 9. The first and second images are the left and right input images. The third image gives the matching results using the method described in this paper.
(Images courtesy Professor S. Peleg of The Hebrew University of Jerusalem).

TABLE I

RUNNING TIMES OF DIFFERENT ALGORITHMS FOR CIRCULAR SHORTEST PATH EXTRACTION. DYNAMIC PROGRAMMING TECHNIQUES ARE USED AS THE

ORDINARY SHORTEST PATH EXTRACTION METHOD ON A 85MHZ SUN SPARC MACHINE.

Running Times (s)
Image Size MSA IPA MBTA IP&MBTA Approx
256×256 12.284s 0.267s 0.227s 0.312s 0.239s
512×512 389.440s 1.948s 0.989s 2.143s 0.962s
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the multiple search algorithm, the image patching algorithm,
the multiple back-tracking algorithm, the image patching and
multiple back-tracking combined algorithm, and the approx-
imate algorithm. The image patching algorithm is very fast
although a solution is not guaranteed. The MBTA is also very
fast and it is guaranteed to find a circular path, but may not
be the optimal one. The combination of image patching and
the multiple back-tracking algorithms achieves a much higher
probability and speed in finding the optimum circular shortest
path. A typical running time for the image patching algorithm
on a 256×256 image is 0.267 seconds on a rather slow
85MHz Sun SPARC computer. The MBTA algorithm takes
about 0.227 seconds. The combination of image patching and
multiple back-tracking algorithm takes about 0.312 seconds.
The algorithm was shown to be fast and reliable in tests on
several different types of real images.
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