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ABSTRACT

This paper introduces a robust method for obtaining the motion parameters of
a camera and 3-D object structure using multiple constraints. These constraints
include the epipolar constraint, the constraint from the properties of an essential
matrix, the relationship between the essential matrix and the epipoles, and the rela-
tionship between the corresponding image points and the essential matrix. Several
new constraints have been developed in this work. All these constraints can be de-
scribed by polynomial equations. Synthetic and real image tests have been carried
out, and the results show that the new algorithm has much better performance than
the existing methods.

1 INTRODUCTION

Structure from motion algorithms are used in the analysis of image motion caused
by relative three-dimensional (3-D) movement between the camera and the imaged
objects. These algorithms attempt to recover both the 3-D motion of the camera
and the 3-D structures of objects. Linear and nonlinear approaches have been
proposed in the literature [1] [2] to the problem of estimating the motion parameters
of a rigid body from a set of corresponding points. Longuet-Higgins [1] and Tsai
and Huang [3] showed that if the scene contains as many as eight points whose
images can be located in each projection and these points can be matched, then
the relative orientation of the two projections, the vector of the translation of the
camera and the structures of the scene can be computed. The linear approach
introduces a set of intermediate parameters, called the “essential matrix”, linearly
related to the data and uniquely leading to the actual motion parameters in a simple
way. Jerian and Jain [4] [5] propose the use of a polynomial system of equations,
with the unit quaternions representing rotations, to recover motion and structure
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under perspective projection. The constraints they used are on the rotation matrix
expressed as unit quaternions. They do not use the constraints on the essential
matrix. Spetsakis and Aloimonos [2] find the essential matrix by minimizing a
quadratic function, and the matrix being able to be decomposed to the rotation
matrix and the translation vector. The constraint is nonlinear and very difficult to
write down analytically. It is our intention in this paper to use multiple constraints
for obtaining robust motion parameters.

Section 2 gives a brief review about the linear algorithm. Section 3 introduces
the possible constraints to be used for the refinement of motion parameters. Before
concluding, section 4 shows experimental results.

2 THE LINEAR ALGORITHM

Introduce a Cartesian coordinate system with the origin at the pin-hole of the camera
and z-axis aligned with the optical axis and pointing outward. Let P be a visible
point in the scene, X = (X, Y, Z)T and X′ = (X ′, Y ′, Z ′)T be its 3-D coordinates
with respects to the two viewpoints, and x = (x, y, 1)T , x′ = (x′, y′, 1)T be the
image points. As the two sets of 3-D coordinates are connected by an arbitrary
displacement, we may write

X′ = R(X−T) (1)

where T is an unknown translation vector (Tx, Ty, Tz)
T and R is an unknown rigid

rotation matrix which should satisfies the following relationship RRT= I = RTR,
det(R) = 1.

An essential matrix Q is defined in [1] as intermediate parameter to calculate
the rotation matrix and translation vector:

Q = RS (2)

where S is a skew-symmetric matrix

S =











0 Tz −Ty

−Tz 0 Tx

Ty −Tx 0











It follows from Equations 1–2 that

X′TQX = 0

Dividing the above equation by ZZ ′ we arrive at the desired relationship between
the image coordinates:

x′TQx = 0 (3)
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From Equation 2, it can be seen that

QT = (RS)T = 0 (4)

The translation parameter T can be obtained by solving this homogeneous equation.
The rotation matrix R and 3-D object structure can be obtained thereafter as in [1].
For real images, the results of the linear algorithm can hardly be trusted. To obtain
better results, more constraints are needed.

3 THE CONSTRAINTS

3.1 Epipoles and the Q Matrix

The centres of projection of two cameras together with any 3-D point define an
epipolar plane, whose intersection with the image plane determines an epipolar line.
The epipoles are defined as the intersects of the interocular axis and the image
planes. Let the left and the right epipoles be located at (π1, π2)

T and (π′

1, π
′

2)
T . If

we define two vectors p = (π1, π2, 1)
T and p′ = (π′

1, π
′

2, 1)
T , we can say that T and

p are similar. Therefore we can have Equation 5 based on Equation 4. Again, the
equation for p′ can be obtained as in Equation 6.

Qp = 0 (5)

p′TQ = 0 (6)

Divide both sides of the matrix Equation 2, and consider the relationship between
the translation vector and the epipores, we have

Q′ = R







0 1 −π2

−1 0 π1

π2 −π1 0







where Q′ is a scaled matrix from Q by 1/Tz. Multiply the above equation by Q′T ,
we have

Q′TQ′ =







1 + π2
2 −π1π2 −π1

−π1π2 1 + π2
1 −π2

−π1 −π2 π2
1 + π2

2





 (7)

From this symmetric matrix, six polynomial equations (three diagonal and three
off-diagonal elements) can be set-up with respect to the elements of Q′ and the two
elements of the epipole in the left image. Similarly we can obtain the relationship
between the Q matrix and the epipole in the right image:

Q′′TQ′′ =







1 + π′2
2 −π′

1π
′

2 −π′

1

−π′

1π
′

2 1 + π′2
1 −π′

2

−π′

1 −π′

2 π′2
1 + π′2

2





 (8)

where Q′′ = 1
T ′

z

QT , and T ′

z is the third element of the translation vector from right
to left coordinate.
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3.2 The Epipolar Constraint

The equation of a straight line of slope m passing through (π1, π2) is (ξ2 − π2) =
m(ξ1−π1). Similarly, denoting by m′ the slope of the corresponding epipolar line in
the other image, the equation of the latter is (ξ′2−π′

2) = m′(ξ′1−π′

1), where (ξ1, ξ2)
T

and (ξ′1, ξ
′

2)
T are the points on the epipolar lines. Any point on a certain epipolar line

in one image can match any points on the corresponding epipolar line in the other
image. Given that all matched points obey Eq. 3, one obtains the following equation
by inserting the line equation above into the matrix representation of Equation 3,

?

ξ′1 m′(ξ′1 − π′

1) + π′

2 1
?

Q







ξ′1
m(ξ1 − π1) + π2

1





 = 0 (9)

for all values of ξ1 and ξ′1. The left hand side of the equation is a second order
polynomial in ξ1 and ξ′1 and can vanish identically if and only if the coefficient of
each term vanishes. This yields four equations. The first of them, arising from the
vanishing coefficient of the ξ1ξ

′

1 term, gives the relation

m′mq22 +mq12 +m′q21 + q11 = 0 (10)

which governs the slopes of a pair of epipolar lines. For a pair of image points,
(x, y)T and (x′, y′)T , the slopes of the epipolar lines (m,m′) on the two images are:

m =
y − π2

x− π1

, m′ =
y′ − π′

2

x′ − π′

1

Substitute these two equations into Eq. 10, we have:

y − π2

x− π1

= −
(x′ − π′

1)q11 + (y′ − π′

2)q21
(x′ − π′

1)q12 + (y′ − π′

2)q21
(11)

This equation gives the relationship among the matching points, epipoles and the
elements of the essential matrix.

3.3 The Properties of the Q Matrix

Huang and Faugeras [6] have proved that a 3 × 3 matrix is decomposable if and
only if one of its singular values is zero and the other two are equal. Let Q =
?

qT
1 qT

2 qT
3

?T

, where q1, q2, q3 are the row vectors of Q. Then, the condition
“one of the singular values of Q is zero” is equivalent to

det(Q) = 0 (12)

and the condition “the two singular values of Q are equal” is equivalent to

||q1 × q2||
2 + ||q2 × q3||

2 + ||q3 × q1||
2 =

1

4

?

||q1||
2 + ||q2||

2 + ||q3||
2
?2

(13)
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3.4 Parameter Refinement

Put all these constraints together, we have Equation 14, in which the unknowns are
π1, π2, π

′

1, π
′

2, the elements of Q matrix. It can be seen from these equations that all
of them can be converted to polynomial equations. Therefore, it is easy to obtain
the first derivatives for the Newton-Raphson refinement.







































































































Qp = 0
p′TQ = 0
det(Q) = 0
x′TQx = 0

||q1 × q2||
2 + ||q2 × q3||

2 + ||q3 × q1||
2 = 1

4
(||q1||

2 + ||q2||
2 + ||q3||

2)
2

y−π2

x−π1

= −
(x′

−π′

1
)q11+(y′−π′

2
)q21

(x′
−π′

1
)q12+(y′−π′

2
)q21

Q′TQ′ =







1 + π2
2 −π1π2 −π1

−π1π2 1 + π2
1 −π2

−π1 −π2 π2
1 + π2

2







Q′′TQ′′ =







1 + π′2
2 −π′

1π
′

2 −π′

1

−π′

1π
′

2 1 + π′2
1 −π′

2

−π′

1 −π′

2 π′2
1 + π′2

2







(14)

Assuming that there are N matched points, there will be 2N+20 equations in Eq. 14.
Solving these 2N+20 nonlinear equations by Newton-Raphson’s method, we can get
the positions of the epipoles on the two image plane and the improved Q matrix.
The epipolar lines thus obtained are more accurate than those obtained just from
Eqs. 5 and 6. In [7] and [8], Braccini used Eqs. 12 and 13 as rigid constraint to obtain
more reliable Q matrix compared to the linear algorithm. By using more constraints
as in Equation 14, it is expected that the results can be improved further.

4 EXPERIMENTAL RESULTS

To verify the analysis developed above, simulations have been performed. The
number of points used was 30, and the noise variance is 0.0833. The exact values
and the results obtained from different (linear, Braccini’s and the robust) algorithms
about the translation vector T, the rotation angle R and the left and right epipoles
are given in Table 1. It can be seen from this table that the results of Braccini’s
algorithm out-performs the linear algorithm, and the robust algorithm gives better
results than both the linear algorithm and the Braccini’s algorithm.

For real image testing, Figure 1(a) shows the images and the edges obtained.
The matching of the features is done using structure matching method [9]. From
the corresponding points obtained, the essential matrix is calculated using the linear
method described in section 2 and the epipolar lines are obtained from this essential
Q matrix. The corresponding epipolar lines are shown in Figure 1(b)(top two). It
can be seen that the epipolar line in the right image is far from the true position.
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If we use the improved method (solving 2N+20 equations at the same time) to
calculate the epipolar lines, the result is shown in Figure 1(b) (bottom two). The
improvement of the result can easily be seen: the resultant epipolar line passes
through the true corresponding point. The obtained epipolar lines can be used for
matching purpose.

Table 1: The exact and obtained values of T, R and epipoles.
T R Left Epipole Right Epipole

Exact (0.965, 0.000, 0.259) (-0.000, 0.000, -30.000) (3.732, 0.000) (-3.732, -0.000)
Linear (0.939, 0.003, 0.343) (-0.190, 0.132, -30.350) (2.738, 0.009) (-5.647, -0.034)
Braccini (0.954, 0.003, 0.299) (-0.171, 0.107, -30.091) (3.193, 0.009) (-3.193, -0.009)
Robust (0.964, 0.003, 0.267) (-0.121, 0.091, -30.995) (3.605, 0.011) (-3.605, -0.017)

(a) (b)

Figure 1: (a) Two images taken by one camera at two positions (top two) and the
edges obtained from them (bottom two); (b) The epipolar lines obtained just from
the essential matrix (top two) and the epipolar lines obtained after refinement using
multiple constraints (bottom two).

Figure 2(a) shows another set of images and their edges. Figure 2(b) illus-
trates the four projections of the 3-D results obtained by the linear algorithm; while
Figure 2(c) gives the four projections of the results obtained by the robust algo-
rithm. The objects in the scene are two cubes and a digital clock. The surfaces
are mostly squares and rectangles. It can be seen from the top left projection of
Figure 2(b) that the squares and the rectangles are skewed to the right, and from
the top right projection of the same figure that one of the squares on the surface of
the cube has been extended to a rectangle when it should be square. The results
given in Figure 2(c) more resemble to the real objects.

799



(a) (b)

(c)

Figure 2: (a) Another set of images taken by one camera at two positions (top two)
and the edges obtained (bottom two); (b) Four projections of the 3-D result obtained
from the linear algorithm; (c) Four projections of the 3-D result obtained from the
robust algorithm.

5 CONCLUSION

Several new constraints have been developed, and they are found to be effective for
calculating better motion parameters. These accurate epipoles can be used to obtain
the epipolar lines for the ease of matching in a later stage. The improved translation
vector is therefore used to compute the rotation matrix, and to calculate the 3-D
structures of objects. The results are much better than those obtained just by linear
algorithm. In order to obtain better results, more constraints or more information
are needed. The constraints about line correspondence might be integrated with
the point correspondence approach for the calculation of motion parameters. More
constraints usually introduce more computation burden as in a high nonlinearity
system, therefore a compromise is frequently made.
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