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Summary

 

Image mosaicing has found a number of  applications such as
panoramic imaging, digital terrain mapping, ophthalmology
and virtual microscopy. In this study, we present an autom-
ated mosaicing technique for generating virtual slides from
microscope images. We carried out robust image feature
matching and global geometric and radiometric parameter
estimation. The input images were transformed using the
estimated geometric and radiometric parameters and mosaiced
together, producing accurate registration of  overlapping
regions without visible seams.

 

Introduction

 

Image mosaicing, also known as image montaging, image
stitching or image tiling, has a wide range of  applications such
as panoramic image generation from several individual photo-
graphs (Capel & Zisserman, 1998; Shum & Szeliski, 2000;
Isgro & Pilu, 2004), digital terrain generation for a large area
(Wu & Campbell, 2004), mosaicing of  fundus angiograms
under ophthalmoscopes (Becker 

 

et al

 

., 1998; Zhou 

 

et al

 

.,
2003) and slide generation for a virtual microscope that can
be used locally or remotely over the internet.

A virtual slide system that employs a combination of
enhanced software, image capture and processing techniques
designed for telepathology was presented by Leong & McGee
(2001). Possible applications of  virtual microscopy are in
diagnostic cytopathology (Steinberg & Ali, 2001), pathology
(Molnar 

 

et al

 

., 2003; Saeger 

 

et al

 

., 2003) and teaching (Harris

 

et al

 

., 2001; Blake 

 

et al

 

., 2003). The concept of  virtual slides

has also been called virtual case (Demichelis 

 

et al

 

., 2002). Ott
(1997) reported an algorithm and its implementation in
public domain software that works with an unmodified
microscope without a motorized stage. Romer 

 

et al

 

. (2003)
reported the use of  a modified standard microscope to generate
virtual slides.

A manual method for seamlessly mosaicing confocal
microscope images for visualization of  neural networks
was presented in Beck 

 

et al

 

. (2000). Dani & Chaudhuri (1995)
proposed techniques for automated mosaicing of  retinal and
satellite images using correlation and pyramidal approaches.
The reference image was chosen arbitrarily first and the
remaining images were processed sequentially. Bradley 

 

et al

 

.
(2005) described a virtual microscope system based on JPEG
2000. They used an extended depth of  field to improve image
quality. The mosaicing approach that they used is sequential.
Appleton 

 

et al

 

. (2005) presented an image mosaicing method
based on dynamic programming for a row of  images of  a
larger set. Duffin & Barrett (1998) presented an optimal
solution for the most general case of  geometric transforma-
tions. However, they did not carry out radiometric correction.
There are also a number of  commercial microscope systems
that produce virtual slides that can handle large image
overlaps (Bacus Laboratories, Inc., 2006; Soft Imaging System
GmbH, 2006).

The mosaicing solutions mentioned above involve manual
intervention or use a sequential approach for parameter esti-
mation and are therefore not optimal. The optimal solution
given in Duffin & Barrett (1998) used general transformation
parameters for the images and did not carry out radiometric
correction. In this work, we focus on a solution for creating an
image mosaic from a microscope where images are obtained
with an automated XY stage and the area of  overlap can be
as low as 5%. The number of  parameters to be estimated for
microscope images is much smaller than that of  general
computer vision applications due to the motion constraints
of  the XY stage.
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In this study, we propose algorithms for automatically
estimating globally optimal geometric and radiometric
transformation parameters for mosaicing microscope
images. Geometric transformation is used to correct geometric
inconsistency among all of  the images and the radiometric
transformation is used to balance variations in intensity due
to inhomogeneous illumination within and across images. In
a first optimization step, the geometric transformation para-
meters for all of  the images are estimated simultaneously. A
subsequent optimization step is used to estimate the radiometric
transformation parameters for all images simultaneously.

 

Materials and methods

 

Image acquisition

 

The images presented here for our example applications were
acquired using an Olympus BX61 microscope (Olympus,
Tokyo, Japan) that was equipped with a motorized precision
stage (model H101, Prior, Rockland, MA). The positioning
accuracy of  the stage is 3 

 

µ

 

m. All images were acquired using a
20

 

×

 

 Olympus UPlanFL objective lens.
Sample images for mosaicing were acquired using two dif-

ferent cameras. A Media Cybernetics Evolution QEi camera
(Media Cybernetics, Silver Spring, MD) was used to capture
images of  fluorescently labelled bacteria and a QImaging
(Burnaby, BC, Canada) MicroPublisher 3.3 RTV colour
camera was used to capture images of  histology sections. The
relevant features of  the two cameras are given in Table 1.

The spatial scale factor was estimated for both cameras in
combination with the 20

 

×

 

 lens. To determine this scale factor,
the stage was moved over a known distance and the shift of  a
feature point in pixels was recorded. This produced initial
estimates for the scale factors for the two cameras. These initial
estimates were subsequently refined during the geometric
parameter optimization process.

The automated stage allowed images to be captured at well-
defined positions on a rectangular grid with approximately
known overlap between neighbouring images. However, mis-
alignment between the camera and the XY stage because of
the camera X and Y axes not being parallel to the X and Y axes

of  the stage movement (hence the existence of  a rotation angle
between the camera X axis and the stage X axis), as well as
mechanical inaccuracies, led to positioning errors such that
features in overlapping images are not perfectly aligned as
illustrated in Fig. 1.

 

Image feature detection and matching

 

Based on the position information of  the microscope stage and
the scale factor, approximate overlap regions between neigh-
bouring images can be estimated as illustrated in Fig. 1 for the
vertical overlap region between images ‘i’ and ‘j’ and the
horizontal overlap region between images ‘k’ and ‘l’. For each
neighbouring image pair, the approximate overlap region can
be calculated and used to constrain the search area for feature
detection and matching.

We used the Harris corner detector to identify candidate
feature points for matching (Harris & Stephens, 1988). The
detected features in the two overlapping image patches were
then matched using correlation and relaxation techniques as
described in Zhang 

 

et al

 

. (1995). Local consistency was used
to further improve matching results (Kanazawa & Kanatani,
2004). The obtained feature matches were also used to fit a
first-order warping function and matches with large residuals
to the warping function were removed. An example match
result is given in Fig. 2. The two images are a pair of  over-
lapping image patches in neighbouring images. Figure 2(B)
shows some matched feature points; the white dots indicate
the feature location in one of  the images and the black lines
show the shift vectors for the corresponding points in the
other image.

The shift vectors from all of  the image pairs were used to
estimate the geometric transformation parameters, whereas

Table 1. The features of  the two cameras used for capturing the sample 
images.

MicroPublisher 3.3 RTV Evolution QEi

Sensor type Colour CCD (Bayer pattern) Cooled CCD
CCD chip Sony ICX252AQ Sony ICX285
Pixel size (µm) 3.45 × 3.45 6.45 × 6.45
Image size (pixels) 2048 × 1536 1392 × 1040

CCD, charge-coupled device.

Fig. 1. Illustration of  image overlaps between neighbouring image pairs.
Two shaded overlap regions are shown in this figure: the vertical overlap
between images ‘i’ and ‘j’, and the horizontal overlap between images ‘k’
and ‘l’.
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intensity information from matched points was used to
estimate the radiometric or intensity transformation
parameters.

 

Global geometric transformation estimation

 

Parameters that are part of  a general transformation model
include translations in the X and Y directions, image rotation,
camera zoom or scaling factor, camera pan and tilt angles,
and lens distortion. The rotation is caused by misalignment of
the camera sensor and stage axis as well as mechanical errors.
For the present application in microscopy, we only considered
two geometric parameters (the X and Y translations) for each
image, one parameter for the image rotation angle (as the XY
stage was used, the angle for each image should stay constant)
and two parameters for the scaling factor along the X and Y
axes for all of  the images. We used the following objective
function for estimating all of  the geometric transformation
parameters simultaneously

(1)

where 

 

N

 

 is the number of  images; 

 

i

 

, 

 

j

 

 are image indices, 1 

 

≤

 

{

 

i

 

, 

 

j

 

} 

 

≤

 

 

 

N

 

; 

 

P

 

 is the number of  overlap regions among which
image matching is carried out and 

 

M

 

p

 

 is the number of  matched
features for overlap region 

 

p
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im
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y

 

im
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x

 

jm
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y

 

jm

 

) are a pair of
matching points in images 
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 and 
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, respectively. The match
point positions (
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im
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y

 

im

 

) and (

 

x

 

jm

 

,

 

y

 

jm

 

) are in the original input
image coordinate system, not in the local system of  the over-
lapping image patches. The 

 

T

 

g

 

s are the geometric transforma-
tions for each image. These involve translation, rotation and
scaling. 

 

X

 

i

 

, 

 

Y

 

i

 

 are the translation parameters to be estimated for
image 

 

i

 

. 

 

θ

 

 is the image rotation angle for all of  the images. The
parameters 

 

s

 

x

 

, 

 

s

 

y

 

 are the scaling factors, which will be the
same for all of  the images. The total number of  parameters is
2

 

N

 

 

 

+

 

 3. In the above objective function, we tried to minimize
the Euclidean distance of  matched feature point positions
when the transformation parameters were applied. The result-
ing transformation parameters were used to align the images
and thus construct the mosaic.

 

Global radiometric transformation estimation

 

Image mosaics constructed using the geometric transforma-
tions described above will typically have visible seams due to
lighting variations within and across images. For seamless
mosaics, one also needs to correct for the uneven lighting
within an image and the intensity differences between neigh-
bouring images. The latter could be due to asymmetrical back-
ground lighting and the overlapping regions being from
different images and from different sides of  the image centre. It
would also arise from fluctuations in the brightness of  the light
source and, to some extent, differences in local thickness of
the embedding medium. For colour images, we calculated the
average intensity from all channels. Therefore, we had the
same number of  parameters for colour as for monochrome
images.

Global radiometric correction was carried out using a simi-
lar approach to geometric correction 

 

−

 

 an objective function
including intensity information from matched points was
optimized. The objective function with all of  the parameters,
which will be estimated simultaneously, is

(2)

The notation is similar to that used in Eq. (1). 

 

T

 

r

 

 is the radio-
metric transformation function for each image. 

 

a

 

i

 

, 

 

b

 

i

 

, 

 

c

 

i

 

, 

 

d

 

i

 

, 

 

e

 

i

 

and 

 

f

 

i

 

 are the parameters to be estimated for image 

 

i

 

. 

 

I

 

i

 

(

 

x

 

in

 

,

 

y

 

in

 

) is
the image intensity at position (

 

x

 

in

 

,

 

y

 

in

 

) in image 

 

i

 

. 

 

I

 

mean

 

 is the
average image intensity value for all of  the image components.

The first term on the right-hand side of  Eq. (2) accounts for
the transformed intensity difference between two neighbour-
ing images. The second term on the right-hand side of  Eq. (2) is
the difference between the intensity transformed image and
the average image intensity value. (

 

x

 

in

 

,

 

y

 

in

 

) are additional regu-
larly spaced sample points in image 

 

i

 

, which are not part of  the
matching points. 

 

N

 

i

 

 is the number of  sample points. The rea-
son for introducing these additional sample points in images is

Fig. 2. Example of  overlap regions (A and B) of
neighbouring images and some matched feature
points shown as shift vectors (B).
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that the features found by the corner detector are not rep-
resentative as they are mostly on image boundaries. Additional
points make parameter estimation more robust.

The function 

 

T

 

r

 

, used in Eq. (2), is defined as

(3)

Other orders of  polynomials, e.g. only using terms involving 

 

b

 

i

 

,

 

d

 

i

 

, 

 

e

 

i

 

 and 

 

f

 

i

 

, for 

 

T

 

r

 

 can also be used.
The radiometrically corrected image is obtained using the

following formula for each image

(4)

As the field of  view of  the microscope camera is small, the
vignetting effect that may exist should be small and it can be
modelled by the quadratic function given in Eq. (3). The
parameters given in Eq. (2) are those for every image; hence
the total number of  parameters for radiometric correction will
be 6

 

N

 

 for 

 

N

 

 images in the parameter estimation stage. Due to
this relatively large parameter number, a larger number of
sampling points from each image will be needed such that enough
constraints are available and the optimization process gives
sensible results. This will lead to a slower estimation process.

The following alternative methods can also be used. The
same quadratic function can be used for all of  the images.
In this case, only six parameters are needed for all of  the
images. Because of  the confining environment of  a microscope,
the change of  lighting condition is not large. Therefore, the use
of  a smaller number of  parameters also gives sensible results.
Radiometric or image background correction can also be
carried out by modelling the intensity function using a white
object at a separate calibration stage for estimating the
background function if  the computational cost of  radiometric
correction is an issue for certain applications.

For histology sections it is generally preferable to use a back-
ground calibration image to perform the intensity correction.
Typically some calibration images need to be captured for
white-balancing and the additional effort required to perform
the corrections is minimal.

For fluorescence applications, however, this is not trivial as
specific calibration slides are needed with homogeneous fluo-
rescence and this is not always available. Also, some fluores-
cence that is outside the field of  view sometimes spills over into
the image. These background effects are different for every
image and cannot be corrected for by using a single calibra-
tion image. However, a quadratic model is not necessarily
appropriate for these types of  effects.

 

Image mosaicing

 

Once the global geometric and radiometric transformation
parameters are obtained, the images can be radiometrically

corrected and geometrically warped. The transformed images
are then stitched together to form a larger mosaic image that
can then be used as a virtual slide.

The steps for creating a mosaic from a set of  input images
are as follows.
1 Estimate initial approximate overlap for neighbouring

images and obtain overlapping image patches from the
original images in these regions.

2 Carry out feature detection and matching for each pair of
overlapping patches. Store the position and intensity
information for each pair of  patches.

3 Optimize geometric transformation parameters for all of  the
images simultaneously using the positions of  the obtained
matching features.

4 Optimize radiometric transformation parameters for all of
the images simultaneously using the intensity and positional
information of  the obtained matching features (for the first
term on the right-hand side of  Eq. 2). A regular sampling
of  image positions and the associated image intensity
information are also needed (for the second term on the
right-hand side of  Eq. 2).

5 Transform images using radiometric parameters using
Eq. (4) for intensity correction.

6 Transform images using geometric parameters for alignment.
7 Combine the transformed images by simply using one of  the

images on the overlapping regions.

 

Results and discussion

 

This section shows some of  the image mosaicing results
obtained using our algorithm. We tested the algorithm on a
variety of  microscope images, both brightfield and fluores-
cence.

Figure 3 shows a set of  images of  a histology section to be
mosaiced. This is a challenging image set as the amount of
overlap for neighbouring images is only about 5% along each
axis. Figure 4(A) shows an image mosaic obtained by simply
tiling the images according to the position information of  the
microscope stage without applying further geometric and
radiometric corrections. The misregistration of  some features
and intensity seams at image boundaries can be seen.
Figure 4(B) shows an image mosaic with geometric and radio-
metric corrections. In this mosaic the misregistration and
intensity seams present in Fig. 4(A) are removed.

Figure 5 shows another grid of  images to be mosaiced.
These images are of  fluorescently labelled bacteria and are
particularly challenging due to the small number of  distinct
feature points in the images. Figure 6(A) gives an image
mosaic without geometric and radiometric corrections.
Again, misregistration and intensity seams at image
boundaries are clearly visible. Figure 6(B) gives an image
mosaic with geometric and radiometric corrections. In this
image, the features are well registered and intensity seams are
not visible.
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Figure 7 shows a pair of  subregions of  mosaiced images of  a
different data set that contains 100 images, one without
(Fig. 7A) and one with (Fig. 7B) the geometric and radiometric
corrections. The large ellipses indicate the positions of  hori-
zontal boundaries, whereas the small ellipses give the vertical
boundaries of  neighbouring images. The arrows indicate
the positions of  image intensity differences for neighbouring
images before and after radiometric correction. The good
quality of  mosaics obtained using our method is clearly
visible.

Table 2 shows the times taken for each processing step for a
set of 25 images on a computer with a 2.66-GHz Intel CPU.
The parameter optimization was carried out using the Nelder-
Mead method described in Nelder & Mead (1965).

To increase the speed of  the mosaicing process, a smaller
number of  transformation parameters may be used. The opti-
mization could also be carried out on a sequence of  sub-blocks
of  images if  the number of  input images is very large.

Fig. 3. Input 25 (5 × 5) histology images. The
percentage of  overlap is about 5%.

Fig. 4. Image mosaics without (A) and with (B) geometric and radiometric corrections.

Table 2. Timings for each processing step (for a set of  25 images).

Timings (s)

Image feature detection and matching 3.19
Geometric parameter estimation 3.21
Radiometric parameter estimation 6.07
Image warping and mosaicing 11.39
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As shown in the figures mentioned earlier, the use of  global
optimization for the geometric and radiometric parameters
produces very good image mosaicing results. The global
nature of  the parameter optimization makes the best use of  all
of  the available information. For most of the images in the
input image grid, there are four overlap regions around each
image (not counting the small overlap regions with diagonal
neighbours). The image feature matching information around
an image helps to stabilize the parameter estimation process.
Local or partial optimization using a smaller number of
images usually does not utilize all of  the available information
and hence the parameters estimated may not be optimal, especially
when the image overlaps are small. The use of  global optimiza-
tion of  all of  the transformation parameters simultaneously

can avoid the accumulation of  small registration errors in
approaches that start with one reference image and keep
adding images.

 

Conclusions

 

Image mosaicing has found a number of  applications. We
have presented algorithms for the automatic estimation of
globally optimal geometric transformation parameters for all
of  the images, and optimization of  the radiometric correction
parameters simultaneously for all of  the images based on
feature matching and image intensity information. The
obtained parameters are then used for image warping, inten-
sity correction and stitching. Results on real microscopy data

Fig. 5. Input 25 (5 × 5) images.

Fig. 6. Image mosaics without (A) and with (B) geometric and radiometric corrections.
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sets show that our algorithm produces mosaics of  high quality,
with accurate registration and without visible intensity seams.
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