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Multiple Paths Extraction in Images Using
a Constrained Expanded Trellis

Changming Sun and Ben Appleton

Abstract—Single shortest path extraction algorithms have been used in a number of areas such as network flow and image analysis.
In image analysis, shortest path techniques can be used for object boundary detection, crack detection, or stereo disparity estimation.
Sometimes one needs to find multiple paths as opposed to a single path in a network or an image where the paths must satisfy certain
constraints. In this paper, we propose a new algorithm to extract multiple paths simultaneously within an image using a constrained
expanded trellis (CET) for feature extraction and object segmentation. We also give a number of application examples for our multiple

paths extraction algorithm.

Index Terms—Multiple paths extraction, constrained expanded trellis, feature extraction, object segmentation.

1 INTRODUCTION

INGLE shortest path extraction techniques have been used

for a number of applications such as crack detection in
borehole images [1], road extraction in satellite images [2],
disparity estimation for stereo images [3], [4], [5], optical
flow estimation [6], object boundary extraction in images
[7], and optimization problems in network and transporta-
tion analysis [8]. The result of ordinary shortest path
extraction is usually a single optimal path.

In some applications, such as high-performance commu-
nication, fault-tolerant routing, transportation networks, and
radar multitarget tracking, it is often necessary to obtain
multiple paths which are in some sense significantly distinct
from each other. In earlier work, such paths have been
variously called mutually exclusive paths, disjoint paths,
completely unmerged paths, or K best paths [9], [10], [11],
[12], [13], [14]. In this paper, we are interested in multiple
paths in images where the total sum of values along all the
K paths is a minimum. These paths could correspond to
multiple features in images or boundaries of objects in
images.

Successive application of a single shortest path extraction
algorithm to obtain multiple paths, although a simple
solution, clearly will not produce the desired optimal
solution in general. Nikolopoulos and Samaras proposed
solutions to the multiple track detection problem using
graph theoretic concepts for detecting discontinuous lines
and for achieving an efficient solution [15]. However, their
solutions are suboptimal.

For optimal multiple paths finding, there are mainly two
classes of algorithms: one based on dynamic programming or
the Viterbi algorithm (as described in [14]) and one based on
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minimum cost network flow (MCNF) algorithms (as
described in [12], [13]). The computation cost of the first class
of algorithms grows exponentially with the number of paths
due to the large network or trellis generated. In the MCNF
approach, an input image is converted into an augmented
graph and an MCNF algorithm is applied to this graph to
obtain the multiple paths which are mutually exclusive (see
[13] for details). This approach takes a topological rather than
a geometric viewpoint of the paths and, so, manages to avoid
explicitly representing the configuration space. As a result, it
requires O((mn)* log(mn)) computation and O(n*m) mem-
ory. Although this class of algorithms is relatively efficient, it
is difficult to impose necessary constraints on the structure or
geometric relationship of the multiple paths. The application
of the MCNF method to image analysis has several difficulties
which will be discussed in Section 4.3.

In this paper, we propose a new algorithm using
constrained expanded trellises (CETs) for feature extraction
and object segmentation in images. Our algorithm is much
more computationally efficient than the first class of
algorithms, as exemplified in [14], and we can easily apply
constraints to control the geometry of the multiple paths
where the second class of algorithms is unable.

The paper is organized in the following sections: Section 2
gives the problem definition and cost functions. Section 3
describes multiple paths extraction problems and the initial
expanded trellis. Section 4 develops a number of geometric
and heuristic methods which greatly reduce the computation
and memory requirements. Section 5 gives our efficient
implementation of dynamic programming in the constrained
expanded trellis. We show the results of our algorithm on a
range of real images from different applications in Section 6.
Section 7 gives concluding remarks.

2 PROBLEM DEFINITION AND COST FUNCTIONS

2.1 Finite Sequences and Paths

Inthis paper,Z,, denotes thesequence of integers (1,2, - - -, m).
Apathisrepresented by a finite sequence P : Z,, — Rwhichis
a function labeling each element of Z,, with an element from
therange R. In this paper, the range is a discrete set consisting
of a finite number of points.

Published by the IEEE Computer Society
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Fig. 1. A simple n x m trellis. A vertex is only connected to three vertices
on its left or right column (apart from vertices on the top or bottom row).

Many problems in image analysis may be phrased as the
search for a path or a set of paths in an image or perhaps in a
space derived from an image. Paths may often be modeled as
finite sequences so that, in this paper, we will consider
sequences and paths to be equivalent. This places the
restriction on the path that it may not “fold back” on itself.
So, the sequence P is single-valued at each point and, for
every index ¢ € Z,,, there is a unique element p; € R. In many
applications, this is a reasonable or even desirable restriction.

The number of paths or sequences of length m with
elements drawn from R is n™, where n = |R| is the number
of elements of the range R. As the number of paths grows
exponentially in m, it is important that path extraction
algorithms avoid enumerating all of these paths. In this
paper, we will also consider very large label spaces R,
necessitating further analysis to reduce the memory and
computational costs in practical implementations. The
search for a discrete sequence is usually performed on a
trellis, which is a graph on the discrete grid Z,, x R. Fig. 1
shows a trellis with n x m vertices.

2.2 A Class of Objective Functions for Discrete
Sequences

In image analysis, noise, occlusions, and irrelevant objects
often make it difficult to select the correct paths. There may be
avery largeselection of seemingly good solutions. Rather than
simply selecting a good path on an ad hoc basis, in this paper,
we frame the path extraction problem as the minimization of
an objective function as has been done in the past [16]. This
objective function, is designed so that reasonable solutions
have low cost while poor solutions have high cost. Ideally, the
path of minimal cost is then the correct path. This approach is
widely used in image analysis because it is able to produce
accurate and robust solutions [16], [17], [18].

We first define the cost function for a single path. Let
C(P) denote the real-valued cost of path P. We consider a
simple but effective class of cost functions:

m m—1
C(P) :ZCO(ZapZ)+ch(l7pz>pz+l) (1)

i=1 =1
Each vertex (i,p;) of the trellis represents the potential
assignment of label p;, to index ¢ of the sequence. A
point (4, p;) is an element of the trellisZ,, x R. Edges connect
vertices (i,p;) and (i + 1, p;+1) in sequential columns of the
trellis. A column of a trellis is a subset of the trellis given by
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fixed values of i. We assign costs to the vertices and edges of
the trellis which are taken directly from the path cost defined
in (1).

The ¢ (4, p;) in the above equation denotes the cost of the
element p; of the sequence P at index 4, i.e., it is a function of
elements of the trellis. We refer to this as a zero order term,
or vertex cost, in the cost function. ¢; (7, p;, pi+1) denotes the
cost of the sequence of elements (p;, pi+1), which we refer to
as a first order term, or edge cost, in the cost function. It is a
function of “neighboring” pairs of elements.

The choice of vertex and edge costs is specific to an
application. For example, when detecting predominantly
dark cracks on a brighter background, we may search for a
path composed of dark pixels. In this case, a simple but
effective vertex cost function is the intensity of each pixel,
co(4,p;) = I(z,y), which is the image intensity at position
(z,y). Likewise, to detect bright lines on a dark background,
we may invert the image, setting (¢, p;) = —I(z, y). Object
boundaries are often strongly correlated with intensity
gradients, so we may use the inverse of the image gradient
as a vertex cost function. In this case, a common choice is
coli,p;) = m, where |VG, * I| computes the absolute
gradient of the image convolved with a Gaussian of
scale o [19].

In both image segmentation and stereo matching, it is
important that the resulting paths be continuous, yielding
connected object boundaries or smooth reconstructed sur-
faces, respectively. This also improves the results in regions
where the correct path is obscured and must be inferred from
surrounding information. In order to ensure that results are
smooth, an edge cost function may be derived to penalize
discontinuities or large jumps. A simple approach is to only
allow neighboring labels to differ by a small amount:

|pi — pis1] < k.

This corresponds to setting the edge cost function to

0, |pi—pin| <k

C1 (iapiapiJrl) = { 00 otherwise
s .

Here, k controls the connectivity of the initial trellis with
2k + 1 edges per vertex. In the applications considered in
this paper, it is sufficient to consider k=1 or 2 at most.
More sophisticated edge cost functions have been used in,
for example, [20] and [21].

A shortest path is then a path which has minimum
total cost,

Poin € argmin{C(P)}.
P

Observe that there may be more than one such path in the
case of ties, so we speak of obtaining a shortest path rather
than the shortest path.

A common method of extending this to detecting closed
object boundaries is to take the polar transform of the image
about a point inside the object. In this case, pixels are
referenced by their polar coordinates § and r and we may
compute a sequence of the form r(6). There are several ways
to ensure that the endpoints of this shortest path meet to form
a closed contour, see [7] or [22] for details. These approaches
are only able to deal with point-convex objects; however, this
is sufficient in many applications. A more sophisticated
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approach which is able to deal with arbitrary closed curves is
presented in [23]. This method extends a planar image to a
spiral space in which points on the shortest path represent
both the spatial position and the number of times that the
curve has passed around the center at that point.

This simple definition of paths and their associated
objective functions may be extended to computing several
paths in one image or to computing joint paths in several
images. The next section extends the single-path framework
above to the case of multiple paths.

3 MUuLTIPLE PATHS COST AND EXPANDED TRELLIS

In some applications, several paths must be extracted. This
includes the detection of multiple linear features across an
image, such as crack detection or aerial road detection, or in
finding the boundaries of objects composed of several layers.
A set of K paths (P',P?, ..., PX) = P across an image or
trellis may be represented as the sequences p},p?,---,pK
indexed by i. We refer to the set of paths P as a multipath. The
points from different paths will be disjoint; this disjointness
constraint will be discussed in the next section along with
other constraints.

The cost of the multipath P is the sum of the costs of the
component paths:

K
C(P)=>_C(P).
=1
From this, we may derive equivalent vertex and edge cost
functions for the vector path P from the sums of the cost
functions of the individual sequences:

m K m-1

C(ﬁ) :ZZCO(LPD+Zz:cl(i7p{7p7{+l)' (2)

In order to find a combination of bright and dark paths,
one could attach a sign function sign(j) to the vertex cost
function ¢y (i, pg ) so that the new vertex cost is sign(j)cy (i, pg ).
This sign function will be the same for every column of the
inputimage or trellis and the possible values for sign () can be
either 1 or -1, where sign value 1 corresponds to a dark path
and sign value -1 corresponds to a bright path. Therefore, by
providing a sign function with different combinations of 1
and -1s, one could find multiple paths with combined dark
and bright paths. For example, if all the values are 1, the result

will be the K darkest paths in the image.
The range R of the multipath is an expanded space formed

from the outer product of the ranges of the constituent paths
and is known as the configuration space. With this approach,
when one is to compute K paths across an n x m image, the
optimal path search can be performed on an expanded trellis
with dimensions n’ x m if no constraints are applied. Fig. 2
depicts an example of the expanded trellis for locating the two
best paths () = 2). Unfortunately this translates to time and
space requirements of O(n®m), so the problem quickly
becomes infeasible as the number of paths K grows. We will
apply several novel constraints in the next section to reduce
this number.
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Fig. 2. The expanded trellis for K = 2 paths. Depicted is a single best
path in the expanded trellis (solid line) and the corresponding K best
paths (dotted lines).

4 CONSTRAINTS ON MULTIPLE PATHS

In this section, we consider a number of constraints which
may be used to reduce the running time and memory
requirements of the shortest multipath problem. These
constraints also regulate the structures of the multiple paths.
We first consider the effect of geometric (disjointness,
ordering, and spacing) constraints on the multiple paths.
We then consider constraints motivated by heuristic argu-
ments which are designed to further reduce the computa-
tional load of the multiple paths extraction problem.

4.1 Disjointness Constraint

In order to avoid obtaining a trivial multipath composed of
K copies of a single shortest path, we require that the paths
be mutually disjoint at every point. That is, we require, for
all indices i =1, ---,m and paths j # k, that p] # p¥. This
constraint may be added into the trellis framework by
simply setting the vertex cost to oo for the vertices in the
trellis with a repeated coordinate or removing those vertices
in the expanded trellis which do not satisfy this disjointness
constraint.

4.2 Ordering Constraint

For a path P in the expanded trellis, each vertex contains
K coordinates corresponding to the K individual paths. The
order of these paths may be permuted to produce a new,
equivalent path in the expanded trellis with the same or lower
cost (when there is no sign function attached to ¢y (7, p!) or this
sign function contains all 1s).

In practical applications of shortest paths, the edge costs
component ¢ (i, p;, pi+1) is monotonically nondecreasing
with the size of the jump |p; — p;41]. In this case, if an order
is imposed on the components of a path in one column of
the trellis, then all further columns of the trellis can be so
ordered without increasing the path cost.

Proceeding inductively, we observe that, in each column
of the expanded trellis, the paths may be represented in
order without increasing the cost of the path. This also
implies that the shortest K paths do not need to cross. The
disjointness and ordering constraints together reduce the
second dimension of the trellis from n* to (), which is a
factor of approximately K!.

Fig. 3a shows paths with crossing and Fig. 3b shows paths
without crossing for two neighboring columns. The noncross-
ing constraint helps reduce the computational complexity
of our constrained expanded trellis algorithm significantly.

The two paths obtained by the MCNF approach shown
in Fig. 4 cross each other. However, this crossing can be
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Fig. 3. (a) Paths can cross each other. The number of possible
combinations of K path positions on column ¢ and K path positions on
column i +1 is K!. (b) Paths do not cross each other. The number of
possible combinations of K path positions on column i and K path
positions on column i + 1 is just one. In this example, K is 3.

postprocessed or switched after the K paths have been
obtained so that no crossing is present if needed.

4.3 Spacing Constraints

A practical problem with computing disjoint paths in an
image is that they may be arbitrarily close together. In
particular, paths which travel close to the shortest path tend to
have low costs, resulting in paths bunching together. Fig. 4a
contains two paths obtained by using the MCNF approach.
The two paths are next to each other and we can hardly see the
path’s separation. Figs. 4b and 4c gives detailed illustrations
of two paths that are next to each other, one path in white and
one in black.

This problem may be easily remedied in the expanded
trellis framework by removing vertices whose constituent
coordinates are too close together. We can set a minimum
spacing constraint ¢ for the paths to prevent them from
coming too close to each other. Similarly, a maximum
spacing constraint A between adjacent paths can also be
used so that paths will not be too far apart from each other. In
addition to controlling the spacing of the paths, these spacing
constraints have the added benefit of reducing the number of
combinations of vertices. Vertices that are too close (< ¢) or
too far (> A) from each other will be removed from the
expanded trellis. This greatly reduces the size of the
expanded trellis, leading to substantial savings in computa-
tion time and memory.

i
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@ (b) (©

Fig. 4. Paths can be close to each other without constraints. (a) An
example of two paths that are next to each other (shown in white and
black) obtained using the MCNF approach. (b) and (c) Two small
regions (the black squares in (a)) showing the paths details.
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Fig. 5. Building the initial and the constrained expanded trellis. K =2
and (,",)- (@) Input image/grid. (b) Expanded trellis with disjointness
and ordering constraints. (c) Expanded trellis with spacing constraints
(vertices with the (1, 4) entries in (b) are removed because the maximum
spacing A between candidate rows is larger than the given range with
6 =1and A = 2). The grid in (a) is in the input space as shown by black
dots, while the grids in (b) and (c) are grids in the expanded trellis space
shown by gray dots.

While the MCNF approach is more efficient for a large
number of paths K, it cannot be modified to include spacing
constraints in the same way as the expanded trellis approach.
As a result, the MCNF approach usually produces paths that
are next to each other instead of locating several significant
paths in an image, as shown in Figs. 4 and 11.

Fig. 5 shows an example of the expanded trellis
structure and its reduction in size using geometric
constraints. Fig. 5a is the input image shown as a grid of
points. Fig. 5b shows the vertices of the expanded trellis
with disjointness and ordering constraints (the connections
between vertices from neighboring columns are not
shown). In the expanded trellis shown in Fig. 5b, the
number of rows equals (1), i.e., choosing K from n. The
number of columns of the expanded trellis is the same as
that of the input image. Each vertex on a column of this
expanded trellis contains one possible combination of K
(in this example, K =2) row positions from the same
column of the input image. Fig. 5c illustrates the reduced
trellis using spacing constraints. In this small case, the
vertices containing the combination (1, 4) are removed with
6=1and A =2.

4.4 Heuristic Constraints

The geometric constraints just developed may be applied to
greatly reduce the size of the expanded trellis. However, the
computational and memory costs remain formidable when
extracting several paths. So, we are interested in further
savings which may be made by heuristic methods.

Vertex Cost Constraint. We can reduce the size of the
expanded trellis further by using the information of the
vertex costs derived from the image. This can be carried out
by checking the sum of the vertex costs at the K candidate
positions at each column of the image, equivalently for each
vertex of the expanded trellis. Vertices which have a very
high cost probably do not belong to a path of interest and
can therefore be discarded beforehand to further reduce the
size of the expanded trellis. Each column of the expanded
trellis is sorted beforehand and only a fixed fraction of
lowest-cost vertices is retained for further processing.

Table 1 shows some example sizes of the expanded trellis
with and without the geometric and vertex cost constraints. It
can be seen from the table that the size of Nj is significantly
smaller than N; for large K. The numbers in Table 1 are for
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TABLE 1
Combination Numbers (Related to the Size of the Expanded
Trellis) without Constraint and after Using Different Constraints

K Ny Ny N3
1 128 128 38
2 8128 | 1023 | 307
k] 341376 | 7018 | 2105
4 | 10668000 | 30613 | 9184

K: number of paths, Ny, Ny, N3: the number of vertices at each column,
N, : with disjointness and ordering constraints, N,: with further spacing
constraints, N3: with vertex cost constraint on N,, (image column and
row numbers: n =128, m =128, 6 =30, A =40, retaining only the
lowest 30 percent of vertices).

noncrossing paths. If path crossing is permitted, the numbers
in the table need to be scaled by K.

Local Minima Constraint. We may also investigate the use of
just those local minimum values of each column of the input
image to reduce the computational cost in future studies. The
intensity values in each column of an image can be treated as a
1D function and the positions of the local minima of the
function can be obtained. These local minimum positions in
each column can be used to build the initial trellis for multiple
paths extraction. Because the number of local minimum
positions on a column is usually much smaller than the length
of the column, n, computational cost can be reduced. In
addition, using only these local minima reduces the
possibility that the paths are very close.

MCNF Preprocessing Constraint. It is also possible to use the
MCNEF algorithm as a preprocessing step in the expanded
trellis approach when the number of paths K is significant. In
this case, we first run the MCNF algorithm on the fullimage to
obtain a large number of candidate paths which are mutually
exclusive. For example, we could compute the best 5K paths
by this approach. We then consider only these 5K pixels for
each column in the construction of the expanded trellis to
greatly reduce the size of the trellis and the consequent
running time. This heuristic is more robust than the simpler
heuristic based on vertex costs alone. However, it is still
possible that the combination of MCNF and the expanded
trellis algorithm will produce a set of paths which is not
optimal. Note that applying one or more of these heuristics
may render the solutions approximate.

5 PRACTICAL IMPLEMENTATION

The constraints presented in the previous section can
reduce the number of vertices in each column of the
expanded trellis from its original size n* to a tiny fraction
N <<n}%' making vast savings in computation time and
memory. However, the vertex cost heuristic and the MCNF
heuristic produce trellises which are extremely sparse. For
heuristics which produce an irregular trellis, great care
must be taken to avoid increasing the complexity of the
shortest path algorithm in practice.

A fundamental operation of the dynamic programming
algorithm in the forward sweep is locating all neighbors of a
vertex in the previous column. As the set of vertices is
sparse, a simple approach as taken in [14] is, for each vertex
in the current column, to search the entire previous column
to locate its neighbors. However, this increases the
computational complexity of our dynamic programming
algorithm from O(mN) to O(mN?), i.e., taking time
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proportional to the square of the number of vertices in
each column. Even with the constraints outlined above, the
number of vertices can still be extremely large, leading to a
very inefficient implementation.

In order to search more efficiently for the neighbors of a
vertex from one column to the previous column, we place
the vertices of each column in an indexing structure. Then,
rather than scanning the entire column, we may simply
query the indexing structure to determine if a particular
neighbor exists and, if so, where it is located in memory.
The coordinates of each column’s N remaining vertices are
stored in a sequential array of length V.

Our implementation uses a multiway trie, which is a
data structure for efficiently mapping between symbol
strings and their unique keys. Vertex coordinates may be
reinterpreted as strings and their keys are their position in
the table of vertices. The trie that we use is a tree of order
256. Beginning at the root of the tree, we branch down the
tree following each byte of the vertex string to reach the
appropriate leaf node. The leaves of the tree hold the keys
corresponding to their associated strings. Strings which
have not been added to the trie lead to a null leaf at some
point, which indicates that the corresponding vertex does
not exist.

As each column is processed in sequence, it is only
necessary to maintain a trie on one column at a time leading
to negligible overhead memory. When processing a column,
the trie is initially empty, consisting of a single null node.
Each vertex in the current column is then added to the trie
along with its associated index in the table of vertices. As
strings are added, the trie branches down the tree following
the bytes of the string toward the associated leaf. This data
structure allows dynamic programming to operate in
O(mN) time and space as desired. For a more detailed
description of multiway tries, see [24].

The steps for obtaining a single shortest path in the
constrained expanded trellis are the following:

1. Computethevertex costateachand every vertexin the
constrained expanded trellis as the sum of the
K component vertex costs. This is to calculate the first
term of (2). The sign function may also be used for
detecting both bright and dark paths simultaneously.

2. For each of the remaining columns (from the second
to the last column):

a. Initialize the trie for the current column.

b. For each vertex in this column, calculate the
partial shortest path cost (this includes calculat-
ing the second term of (2)) and add in the vertex
cost obtained in Step 1 for every neighboring
vertex in the left column.

c. Take the least of these costs to obtain the
shortest path to the current vertex.

d. Save the index of the vertex on the left column
which gives the least cost.

e. Delete the trie for the current column.

3. Backtrack the path from the last column to the first.

In addition, tries may be used for sparse but structured
trellises such as those created by geometric constraints. In this
case, the structure of the trellis is the same in each column, so
the trie only needs to be calculated once. This may lead to
substantial savings in practice.
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Fig. 6. Input and multiple paths. (a) and (b) Tree bark, K = 2. (c) and
(d) Fiberglass, K = 2.

Finally, it should also be noted that the overzealous
application of heuristics may lead to a disconnected trellis.
In the implementation of dynamic programming, it is
simple to detect such instances and halt gracefully.

After a shortest path is obtained in the constrained
expanded trellis (e.g., Fig. 5¢), the K paths in the input trellis
or image can be obtained. For example, if the single shortest
path obtained in the constrained expanded trellis passes
through vertices (1,2) incolumn 1, (2, 3) in column 2, and (2, 4)
in column 3 of Fig. 5¢, then the K (= 2) best path positions in
Fig. 5a are: 1) (row 1, column 1) then (row 2, column 2) and
then (row 2, column 3) and 2) (row 2, column 1) then (row 3,
column 2) and then (row 4, column 3).

The steps of our complete CET algorithm for multiple
paths extraction in images are the following;:

1. If necessary, transform the image. For example,
Cartesian to polar coordinate transformation for
circular shaped objects (the rough position of the
object center will be provided by users) or rotate the
image by 90 degrees if vertical paths are to be
extracted. Also, carry out any required preproces-
sing such as computing the image gradient.

2. Obtain K optimal paths:

a. Build an initial expanded trellis from the input
image or from the transformed image obtained in
Step 1.

b. Eliminate vertices on the initial expanded trellis
using constraints (except the local minima and
MCNF preprocessing constraints) as described
in Section 4.

c. Perform dynamic programming on the con-
strained expanded trellis to find a single path
with minimum cost. The ordering (noncrossing
and path connection) constraint is applied here
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Fig. 7. Input and multiple paths. (a) Input borehole image. (b) Two paths
obtained using our CET algorithm, K = 2, k = 2. (c) Two paths obtained
using the MCNF algorithm (the two paths are actually next to each other).

and tries are used for an efficient neighbor
search (see the algorithm given above).

d. Convert this single path on the constrained
expanded trellis to the K optimal paths on the
input image.

3. If Cartesian to polar coordinate transformation was
carried out in Step 1, a reverse transformation is
necessary to obtain closed multiple paths in the
original image. A rotation of -90 degrees on the result
image is needed when vertical paths are extracted.

6 EXPERIMENTAL RESULTS

This section shows some of the feature extraction and object
segmentation results on images obtained using our CET
algorithm described in previous sections. A variety of real
images have been tested. Comparisons with the MCNF
approach are also carried out.

Fig. 6a shows an inputimage of tree bark and Fig. 6b shows
the two paths found. Fig. 6d gives the two boundaries of some
fiberglass shown in Fig. 6c. Fig. 7a shows a borehole image
with cracks and Fig. 7b shows the two paths found using our
CET algorithm. Fig. 7c shows two paths obtained using the
MCNF method; the two paths are actually next to each other.
Itis clear from this example that the result obtained using our
CET algorithm is more desirable than that obtained using the
MCNF method.

Fig. 8 gives more results of using our multiple paths
detection algorithm on different images (aerial and micro-
scopic). Fig. 8b shows the two sides of the road boundary inan
aerial image and Fig. 8d shows two gross boundaries of wood
cells, with the inputs given in Figs. 8a and 8c, respectively.

Fig. 9 gives further examples of multiple paths extraction
inimages. Figs. 9a and 9b show road crack images and Figs. 9¢
and 9d show an image of lightning bolts. Two of the
computed paths approach each other at one point because
the minimum spacing constraint § is set to 1. Figs. 9eand 9f are
the results of linear feature detection of a rope underwater.

Fig. 10 shows results for multiple paths extraction in
seismic data. Fig. 10a is the input image. Fig. 10b is the
result of detecting only one path. Fig. 10c is the result of
obtaining three paths in the image. Notice that the single
path shown in Fig. 10b is not present in the three paths in
Fig. 10c. This confirms that successive application of single
shortest path extraction will not give optimal results for
multiple paths extraction.
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Fig. 8. Features extraction for road boundaries in aerial images and
gross boundaries of wood cells. (a) and (c) Input images. (b) and
(d) Object boundaries extracted (black lines). (b) K =2, § =5, A = 30.
(d) K=2,6=5, A=180.

Figs. 11b and 11c give the results of our algorithm for crack
detection in borehole images (the input shown in Fig. 11a)
with K = 2 and different 6 and A values. For Fig. 11c,a A =
50 is used rather than A = 80 as in Fig. 11b. This reduces the
maximum spacing that the two paths can have. Two different
pairs of paths are obtained in these two images as, in Fig. 11b,
the paths are separated by more than 50 pixels at some points.
The rest of the figures show results using the MCNF
approach with different values of K. The two paths obtained
using our CET algorithm shown in Fig. 11b are similar to the
three or four paths shown in Figs. 11e and 11f obtained using
the MCNF approach. It can be seen from this figure that the
MCNF approach usually produces a number of paths next to
each other due to a lack of geometric constraints.

Fig. 12 gives more results of using our multiple paths
extraction algorithm on different medical images. For the
input images shown in Figs. 12a and 12d, we convert them
into polar coordinates with the origin roughly at the image
center before applying our CET algorithm, as shown in
Figs. 12b and 12e. The inverted gradient image provides the

(©) (d)

(e) ()

Fig. 9. More examples of multiple paths extraction in images. (a) and
(b) Road crack images and paths extracted, K =3, § =10, A = 40.
(c) and (d) Image of lightning bolts and paths extracted, K =3, § =1,
A =60. (e) and (f) Image of a rope underwater and rope boundaries
extracted. The intensity of the image in (f) is adjusted so that the two paths
(one black and one white) can be seen easily. K =2,6 =4, A=17.

vertex costs for obtaining the object boundaries. Figs. 12c and
12f show the object boundaries obtained with K = 2.
Figs. 13 and 14 show some more results of our algorithm on

different images: an eye, a cut orange, a flower, wood rings, a
dog jumping through a hoop, a donut, a broken tire, a meter,
and a cardiac MR image. For these examples, the inputimages
are first transformed into polar coordinates and gradient

(©

Fig. 10. Multiple paths obtained for seismic data. (a) Input image. (b) Single path obtained, K = 1. (c) Three paths with constraints obtained, K = 3,

6 =5, A =10. Notice the different positions of paths in (b) and (c).
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Fig. 11. Multiple paths obtained for borehole images. (a) Input image.
(b) and (c) Results with our CET method. (b) CET, K = 26 = 20, A = 80.
(c) CET, K =2 6 =20. A =50. (d), (e), (f), (9), and (h) Results via the
MCNF approach (paths next to each other). (d) MCNF, K = 2. () MCNF,

K = 3. (f) MCNF, K = 4. (g) MCNF, K = 5. (h) MCNF, K = 6.

operations are carried out (the gradient of the MR image was
also equalized). The origin of the polar coordinates must be
inside the object boundaries. For multiple objects, such as two
eyesin asingleimage, two separate runs of the CET algorithm
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are necessary. Results shown in Figs. 12, 13, and 14 are
examples of objects with closed boundaries.

Fig. 15 shows some example results for feature detection in
an image taken underwater near a coral. Fig. 15a is the input
image taken underwater containing a rope and coral, Fig. 15b
is the gradient image of Fig. 15a (stretched to the 0-255 range
for display purposes), Fig. 15c is a single brightest path
obtained from the original image Fig. 15a, Fig. 15d shows two
paths obtained using the gradient image Fig. 15b, Fig. 15e
shows three paths obtained using the gradientimage Fig. 15b,
and Fig. 15f shows three paths obtained using the gradient
image Fig. 15b with signs of 1, -1, and 1 attached to the vertex
cost function (the gradient image is inverted when obtaining
the results shown in Figs. 15d, 15e,and 15f). These signs allow
us to locate a central dark path along with one bright path on
each side. It can be seen that the three paths found in Fig. 15f
best align with the object of interest, the rope.

Fig. 16 shows another example for object boundary
detection using our CET algorithm. Fig. 16a is an image of a
cell with a fuzzy boundary; Fig. 16b shows the cell boundary
obtained by finding two paths with signs -1 and 1 attached to
the vertex cost function. This corresponds to one dark path a
distance of 6 or 7 pixels inside a bright path (i.e., 6 = 6 and
A =7). Although we obtained two paths for the cell
boundary, the two paths are very similar. For this example,
a single shortest path extraction can also be used on the
inverted gradient image for cell boundary extraction. In this
case, the image gradient may be obtained using a scale of
about 7 pixels. Both Figs. 15 and 16 give examples for the use
of the sign function in our CET algorithm.

6.1 Running Times

On a 2.4GHz Pentium 4 running Linux, our CET algorithm
takes about 1.9 s on a 256 x 256 image to locate the two best

Fig. 12. Extracting features in medical images. (a) and (d) Input images. (b) and (e) Inverted gradient image of the polar transformed images. (c) and
(f) Object boundaries extracted (black lines). In both the images, K = 2 for the inside and outside boundaries. The images in (c) and (f) are also
Gamma (= 2) transformed for display purpose. (c) 6 =5, A =30. (f) 6 =5, A=8.



SUN AND APPLETON: MULTIPLE PATHS EXTRACTION IN IMAGES USING A CONSTRAINED EXPANDED TRELLIS

(@) (b)

Fig. 13. Multiple paths obtained for some images (eye, cut orange,
flower, and wood rings). (a) Input images. (b) Object boundaries
obtained, K = 2.

paths with 6 =30, A =40, and retaining only the lowest
60 percent of vertices. Table 2 shows the running times of our
algorithms with different percentages of vertices that are kept
in the expanded trellis. Clearly, a lower percentage of vertices
in the trellis leads to significantly reduced computing times.

Table 3 gives comparative timings for using our efficient
method and the whole column search method on images
with random noise. The parameter settings when running
the algorithm are given in the table. It can be seen from the
table that our efficient method with the use of a trie is much
faster than searching the entire column, especially for large
image sizes or for a large number of paths.

6.2 Discussions

Here, we summarize all the parameters that we can use for
the multiple paths extraction algorithm.

K: The number of paths sought.

6, A: Minimum and maximum spacings between neighbor-
ing pair of paths.

k: Connectivity of vertices between neighboring columns of
the initial trellis.

percent: Percentage of vertices in the constrained expanded
trellis to retain for further processing.

Fig. 14. Multiple paths obtained for other images (dog in circle, donut,
broken tire, meter, and a cardiac MR image). (a) Input images. (b) Object
boundaries obtained, K = 2.

sign: Sign function which may be used for extracting a
combination of dark and bright paths.

crossing: Whether crossing is allowed in the algorithm.

The first three parameters in the above list, K, §, and A
need to be specified for the algorithm. The two important
ones are the minimum and maximum spacing constraints: ¢
and A. The smaller the difference between 6 and A, the bigger
the correlation of shapes of multiple paths that we may
obtain. If the multiple paths present in an image have little
geometric relationship, then 6 may need to be small and A
may need to be large. Therefore, the algorithm may be slow.

In this paper, the parameter k, which is related to the edge
cost function, has always been set to 1 with the exception of
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Fig. 15. A rope detection example with the image taken underwater near
a coral. (a) Input image taken underwater containing a rope and coral.
(b) Gradient image of (a) (stretched to the 0-255 range for display
purpose). (c) A single brightest path obtained from the original image (a),
K =1. (d) Two paths obtained using the gradient image (b), K = 2.
(e) Three paths obtained using the gradient image (b), K = 3. (f) Three
paths obtained using the gradient image (b) with signs of 1, -1, and 1
attached to the vertex cost function, K = 3.

Fig. 7b, where it is set to 2. For k = 1, each vertex on the initial
trellis has 2k + 1 = 3 edges connected to vertices in the left
column, whereas, for & = 2, each vertex has five connections.
The vertex cost function in (2) can be just the image intensity
values or image gradients. One can also select a percentage
threshold so that only this percentage of vertices in the
constrained expanded trellis are used for processing. The
sign(j) function, with values either 1 or -1 for each index j
(j=1,---,K), enables us to find a combination of dark or
bright paths in images. Although, in all our experiments, we
did not allow paths to cross, it is possible to allow paths to
cross. However, the search cost will increase by a factor of K.

The algorithm developed in this paper can be used in a
number of applications where multiple paths are sought.
These paths can be horizontal paths, vertical paths, or circular
paths. In most parts of this paper, we are talking about
multiple paths from the left of the image to the right of the
image, i.e., horizontal paths. If vertical paths are to be
obtained, a rotation of the input (and output) image is needed
so that the horizontal paths extraction algorithm can be

(a) (b)

Fig. 16. A cell boundary detection example where the cell boundary is
poorly defined. (a) Input image of a cell with a fuzzy boundary. (b) Cell
boundary obtained using K = 2 with signs =-1,1, § =6, and A = 7.

TABLE 2
Running Times of Our CET Algorithm
on Images with Various Percentage Values

Percentage | Running Times (s)
100 8.85
90 8.21
80 7.76
70 6.92
60 6.15
50 5.41
40 4.47
30 3:52
20 2.61
6 =2, A =5, K =3, and image size 256 x 256.
TABLE 3

Running Times of the Algorithm with Whole Column Search
or with the Use of Tries on Different Images with
6 =2, A =5, and Keeping 80 Percent of the Vertices

Running Times (s)

K | Image size | Column search | Use of trie
64 x64 0.15 0.07

2 | 128x128 1.07 0.34
256256 8.23 1.29

64 %64 1.83 0.45

3 | 128x128 14.90 1.90
256x256 120.60 7.76

applied. For circular paths, a Cartesian to polar coordinate
(and a reverse for the result) transformation is necessary.

The objective of our algorithm is to obtain multiple paths
where the sum of pixel values on these paths is minimal. In
some applications where multiple paths are clearly defined
and well separated, a single shortest path algorithm may be
used by applying it several times on the image. But, this
simple approach will be error prone for paths which are less
well-defined. Figs. 10b and 15c¢ show examples where
successive application of a single shortest path algorithm
does not work, whereas our CET algorithm produces the
desired results.

For closed object boundary extraction, the input image is
first transformed from Cartesian to polar coordinate. Then,
multiple horizontal paths are extracted using our CET
algorithm. If the path features are clearly present in the
image, direct application of the CET algorithm may produce
closed boundaries. If the features are not well-defined, there
are several ways to ensure the endpoints of the multiple paths
meet, as mentioned in Section 2.2 for single shortest path. We
can use similar techniques to obtain multiple closed object
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boundaries. The simplest and the most efficient technique to
use is the Image Patching Algorithm or a combination of the
Image Patching Algorithm with the Multiple Back-Tracking
Algorithm developed in [7]. In the Image Patching Algo-
rithm, the input image (in our case, the polar transformed
image) is patched on the left and the right sides with portions
of the input image itself, say with one-fourth of the image
width. Then, the CET algorithm can be applied to the patched
image for obtaining paths that should be closed. For a detailed
description of the Image Patching Algorithm and related
algorithms, please see [7].

7 CONCLUSIONS

Shortest path or K-best paths algorithms have found many
applications in several disciplines. We have proposed a new
algorithm for finding multiple paths in images using a
constrained expanded trellis (CET). With our method, we
are able to easily incorporate several constraints into our
algorithm. These constraints help to regulate the shape of
the paths and reduce the computational cost significantly. A
list of possible multiple paths can also be obtained. We give
several application examples for feature extraction and
object segmentation in images. Our CET algorithm could be
extended to 3D images for linear features although the
resulting search space may be large.
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