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Abstract

This paper presents a fast and reliable stereo match-
ing algorithm which produces a dense disparity map by
using fast cross correlation, rectangular subregioning
and 3D maximum-surface techniques in a coarse-to-�ne
scheme. Fast correlation is achieved by using the box
�ltering technique whose speed is invariant to the size
of correlation window and by segmenting the stereo im-
ages at di�erent levels of the pyramid into rectangular
subimages. The disparity for the whole image is found
in the 3D correlation coeÆcient volume by obtaining
the maximum-surface using our novel two-stage dy-
namic programming technique. There are two original
contributions in this paper: (1) development of a rect-
angular subregioning (RSR) technique for fast similar-
ity measure; and (2) development of a novel two-stage
dynamic programming (STDP) technique for obtaining
3D maximum surface in a 3D volume eÆciently. Typ-
ical running time of our algorithm implemented in C
language on a 512�512 image is in the order of a few
seconds. A variety of synthetic and real images have
been tested, and good results have been obtained.

1 Introduction

The correspondence problem in stereo vision and pho-
togrammetry concerns the matching of points or other
kinds of primitives such as edges and regions in two
or more images such that the matched points are the
projections of the same point in the scene. The dispar-
ity map obtained from the matching stage may then
be used to compute the 3D position of the scene points
given knowledge about the relative geometry of the two
cameras. Matching techniques can be divided mainly
into area-based and feature-based image matching, or a
combination of them. Other types of techniques such as
pixel-based [7], di�usion-based [31], wavelet-based [19],

phase-based [25], and �lter-based [18] matching meth-
ods have also been developed.

Intille and Bobick [17, 8] presented a stereo al-
gorithm that incorporates the detection of the oc-
clusion regions directly into the matching process.
Wei et al proposed an intensity- and gradient-based
stereo matching using hierarchical Gaussian basis func-
tions [35]. Fua [13] described a correlation based multi-
resolution algorithm which is followed by interpola-
tion. Anandan [1] described a hierarchical computa-
tional framework for the determination of dense motion
�elds from a pair of images. A number of researchers
have used dynamic programming to solve globally the
matching problem [15, 3, 27, 6]. There are other algo-
rithms which perform fast stereo matching [14, 20, 4].
Sun [33] developed a fast stereo matching method using
fast cross correlation and dynamic programming tech-
niques in a coarse-to-�ne scheme. The dynamic pro-
gramming was applied to the correlation coeÆcients
matrix along the corresponding epipolar lines. All the
methods mentioned above did not consider the continu-
ity of neighbouring epipolar lines. Ohta and Kanade
used dynamic programming to match epipolar scan-
lines �rst and then improve the solutions iteratively us-
ing edges [23]. Cox et al presented a stereo matching al-
gorithm using dynamic programming technique consid-
ering the inter-scanline constraints [11]. The method
needs small number of iteration and approximates the
global solutions.

Roy [29] and Roy & Cox [30] developed an algorithm
for solving the N -camera stereo correspondence prob-
lem by transforming it into a maximum-ow problem.
The average running time for Roy and Cox's algorithm
was O((MN)1:2D1:3) (with image sizeM;N and depth
resolution D) [30]. Chen and Medioni [9] presented
a propagation type of algorithm similar to [23]. The
techniques they used included non-maxima suppres-
sion, seed voxel selection and surface tracing. There
was no mentioning about the speed issues in [9]. Yang
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and Yuille proposed a non-linear �lter for detecting dis-
parity surface in a 3D volume [37]. They �rst apply the
�lter to the 3D volume and then simply use maximum-
picking. Zitnick and Kanade presented a volumetric
iterative algorithm for stereo matching [38]. The algo-
rithm updates the match likelihood values by di�using
support among neighbouring values and inhibiting oth-
ers. There are stereo vision systems that are able to
perform stereo matching in video rate [24, 10, 32]. But
all these systems have hardware or assembly language
supports and some have multiple cameras.

In this paper we will present novel techniques for
segmenting stereo images into rectangular subregions
(RSR) for fast similarity calculation and for obtain-
ing 3D maximum surface in a 3D correlation coeÆ-
cient volume for fast stereo matching. We will also
address some of the other eÆcient and reliable imple-
mentation aspects of the stereo matching algorithms by
using fast correlation and dynamic programming tech-
niques in a multi-resolution scheme, which results in
very fast stereo matching. The disparity is obtained
from a 3D correlation coeÆcient volume using a two-
stage dynamic programming (TSDP) technique consid-
ering the continuity of the neighbouring epipolar scan
lines. The rest of the paper is organised as follows:
Section 2 proposes our new rectangular subregioning
method over the input images for fast calculation of
similarity measure. Section 3 presents our new method
of stereo matching by �nding the maximum surface in
the 3D correlation volume by using the two-stage dy-
namic programming techniques. The detailed match-
ing method is described in Section 4. Section 5 shows
the experimental results obtained using our fast stereo
matching method applied to a variety of images. Sec-
tion 6 discusses the reliability and computation speed
issue of our algorithm. Section 7 gives concluding re-
marks.

2 Rectangular Subregioning for

Fast Similarity Measures

Di�erent similarity measures have been used in the lit-
erature for matching, and their performance and com-
putation costs vary [26, 2]. The most commonly used
similarity measure is the cross correlation coeÆcient.
It is popular because it corresponds to optimal signal-
to-noise ratio estimation [28]. The sum of absolute
di�erences (SAD) and the sum of square di�erences
(SSD), both dissimilarity measures, have also been
used. Their usage is usually justi�ed on the ground
that they are easy to implement and use less com-
puting power, especially when they are used in the

fast sequential similarity detection algorithm [36, 5].
Konecny and Pape [21] reviewed image correlation
techniques according to photogrammetric and mathe-
matical fundamentals. It has also been shown that the
zero mean normalized cross correlation (ZNCC) and
the zero mean sum of squared di�erences tend to give
better results [12, 26, 2]. The ZNCC estimate is inde-
pendent of di�erences in brightness and contrast due to
the normalization with respect to mean and standard
deviation. We will use the zero mean normalized cross
correlation coeÆcient as the measure of similarity be-
tween the candidate matching areas in this paper. But
direct calculation of ZNCC is computationally expen-
sive. Faugeras et al [12] developed a recursive technique
to calculate the correlation coeÆcients which are invari-
ant to the correlation window size. Sun [33, 34] used
box-�ltering technique for fast cross correlation. The
following subsections describe our early work in [33, 34]
for achieving fast correlation on the whole image and
our new technique of using rectangular subregioning
for fast similarity measure. The complexity of the al-
gorithm is O(MND). The storage space needed for
the correlation coeÆcients is in the order of 4MND

bytes. The fast algorithm for ZNCC calculation can
be easily adopted to obtain the SAD and SSD mea-
sures eÆciently.

2.1 Rectangular Subregioning (RSR)

Rather than work with the whole image during the
fast correlation stage, we could work with subimages
to speed up the correlation calculation further and re-
duce the memory space for storing the correlation co-
eÆcients. If the input image is divided into R rectan-
gular subregions, the computation complexity will bePR�1

i=0
(MiNiDi), where Mi, Ni are the row and col-

umn numbers for the ith subimage or region, and Di is
the disparity search range over this subimage. We call
the process of segmenting the input images into rect-
angular subimages as rectangular subregioning (RSR).
Because the disparity search range Di is obtained in
a much smaller region (MiNi), Di is expected to be
smaller than D. Even when it is not much smaller, the
size of this region (MiNi) is much smaller than the in-

put image. It is anticipated that
PR�1

i=0
(MiNiDi) will

be smaller than MND, especially when the disparity
changes a lot within the whole image.

Although there are some overheads when work-
ing with subimages, such as region segmentation and
house-keeping, the time saved during the correlation
stage is far greater than the time spent for the over-
head. There is another advantage for working with
subimages in terms of memory usage. In the case
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of working with one whole image, the memory space
needed is in the order of 4MND bytes. While in the
case of working with subimages, the memory space
needed is in the order of maxi(4MiND0

i), because the
memory for each subregion is dynamically allocated
and freed, where D0

i is the disparity search range for a
particular horizontal stripe.

2.2 Rectangular Subregioning Process

Now we will describe our fast method for segmenting an
image into rectangular subregions for fast stereo match-
ing in more detail. The method that we developed for
segmenting an image into rectangles are in the line of
region split-merge techniques. The input for this seg-
mentation step is the intermediate disparity map by
projecting and interpolating the result from the previ-
ous pyramid levels. If the current level is at the top of
the pyramid, the current disparity map can be set to
zero. The coordinate of the disparity map is the same
as the left image if the left image is taken as the refer-
ence; otherwise, the coordinate of the disparity map is
the same as that of the right image. The input image
is �rst divided into thin horizontal stripes. Each stripe
contains the property such as stripe corner positions,
the minimum and maximum disparity values. Then
these thin horizontal stripes are merged according the
criteria that the overall computing complexity is min-
imum taking the overhead into account. At each step
of the merging process, only neighbouring stripes can
be merged.

After the image has been segmented into horizontal
stripes, each such stripe can then be cut into regions
by vertical lines. The steps are similar to those for seg-
menting images into horizontal stripes. The objective
is to obtain large regions with small disparity range
and small regions with large disparity range so that
the overall cost

PR�1

i=0
(MiNiDi) is smaller. Figure 1

illustrates the rectangular subregioning precess. Fig-
ure 1(a) gives the initial horizontal stripes of the input
image. Figure 1(b) shows the subregions obtained from
Figure 1(a). Figure 1(c) is the initial vertical cuttings
for each horizontal stripe. Figure 1(d) shows the re-
sult of merging the small rectangular regions within
the horizontal stripe. Fast correlation is performed
on each of these smaller rectangle images, and the ob-
tained correlation coeÆcients are put together into hor-
izontal stripes or cubes. Figure 2(a) shows a disparity
map which is used for rectangular subregioning at one
level of the pyramid. Figure 2(b) shows the rectangu-
lar regions obtained. Most of the regions have small
disparity ranges.

(c) (d)

(b)(a)

Figure 1: Rectangular subregioning through merging
thin rectangles. (a) shows the initial horizontal stripes
for the input disparity map. (b) illustrates some hori-
zontal regions after the horizontal stripe merging pro-
cess. (c) shows the initial vertical stripes for each of
the horizontal regions shown in (b); and (d) is the �nal
rectangular regions obtained.

(a) (b)

Figure 2: An example result of sub-dividing the whole
image into subimages based on intermediate disparity
map in the pyramid. (a) a disparity map at a particu-
lar image pyramid; (b) the disparity map shown in (a)
overlaid with the rectangles obtained. Each of these
rectangles will be used for running the fast correlation
algorithm described earlier.

2.3 Corresponding Regions in Right
Image

When actually performing fast correlation calculation
for each of the subregions, certain size of region over-
lapping needs to be considered in order to eliminate
the boundary e�ect. It is also necessary to allow some
overlapping between successive horizontal stripes. The
amount of overlapping depends on the size of the corre-
lation window used. In the case when the left image is
taken as the reference image, the subregions obtained
on the disparity map also correspond to the subregions
in the left image. Otherwise, the subregions obtained
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on the disparity map will correspond to the subregions
in the right image. When calculating the corresponding
positions of a subregion in the right image after know-
ing the position of a rectangular region in the left im-
age, the disparity information of this region in the dis-
parity map will be used. If the disparity search range
for a subregion (between y1; y2 and x1L; x2L) in the
left image is within dmin and dmax, the x position of the
corresponding region in the right image x1R should be
a position between x1L+dmin and x1L+dmax. The ap-
proach we used here for rectangular subregioning may
not be the global minimum, but it is fast and simple
and serves our purpose for fast processing.

2.4 Algorithm Steps for Rectangular
Subregioning

The steps of performing the rectangular subregioning
can be summarised as:

0. Inputs of the algorithm: (1) Current pyramid level
stereo images. (2) Initial disparity map.

1. Segment the images into horizontal stripes

(a) Divide disparity map into horizontal stripes
(b) Recursively merge neighbouring stripes until

no neighbouring stripes are similar enough.

2. For each horizontal stripe, segment it into rectan-
gular regions

(a) Divide horizontal stripe into vertical stripes
(b) Use similar merging technique as in merging

horizontal stripes

3. Obtain the corresponding regions in the right im-
age using the disparity information.

3 Maximum-Surface in 3D

From the previous section, we have obtained a 3D cross
correlation coeÆcient volume using fast cross correla-
tion working with rectangular subregions.

In this section, we will approach the issue of ob-
taining disparity map from the 3D correlation coeÆ-
cient volume using dynamic programming techniques,
which is computationally eÆcient. We developed a new
method to obtain a maximum-surface from a 3D vol-
ume using a two-stage dynamic programming (TSDP)
technique. Because of the use of TSDP, the algorithm
is very fast. This maximum-surface cuts through the
3D volume from the top to the bottom or other direc-
tions. The maximum-surface gives the maximum sum
of the correlation coeÆcients along the surface when
certain constraints are imposed.

Now we describe our new algorithm for the
maximum-surface extraction in a 3D volume of size
MND using our fast TSDP method. The �rst stage of
the method is to obtain an accumulated intermediate
volume in the vertical direction. Assume C(i; j; d) is
the correlation coeÆcient value in the input 3D volume
at position (i; j; d), where 0 � i < M; 0 � j < N , and
0 � d < D. We create an intermediate array Y (i; j; d)
which contains the accumulated values of the maximum
cross correlation coeÆcients along all the possible sur-
faces in the same volume using dynamic programming
techniques in the vertical direction say from top to bot-
tom, i.e. when i changes from 0 to M -1. For the top
horizontal slice of the volume, i.e. when i = 0,

Y (0; j; d) = C(0; j; d) (1)

i.e. the top (horizontal) slice of Y is a copy of the top
slice of C. For the remaining horizontal slices of the
volume, the Y values at each position is obtained by
using the following recursion which is a typical dynamic
programming formula:

Y (i; j; d) = C(i; j; d) + max
t:jtj�p

Y (i� 1; j; d+ t) (2)

where p determines the number of local values that
need to be checked. If p = 1, only three values in
Y need to be evaluated. The three values are Y (i �
1; j; d � 1); Y (i � 1; j; d) and Y (i � 1; j; d + 1). The
recursion in Eq. (2) only happens in the (i; d) plane for
each particular j as shown in Figure 3. Figure 3(a) is
the 3D correlation coeÆcient volume; and Figure 3(b)
shows the positions of neighbouring Y values for one
plane during the recursion. Other values of p such as 2
or 3 can also be used. But larger p values will increase
the computation cost of the above recursion. In this
paper we will just use p = 1.

N (j)

M
(i)

D (d
)

M
(i)

D (d
)

Y(i-1,j,d-1)

Y(i-1,j,d)

Y(i-1,j,d+1)

Y(i,j,d)
[C(i,j,d) ]

(a) (b)

Figure 3: Obtaining the Y (i; j; d) volume. (a) shows
the 3D volume Y with a vertical slice in grey; (b) illus-
trates the positions of the Y values at each iteration.

After the recursion described in the previous para-
graph, Y contains the maximum sum of C in the verti-
cal direction from top to bottom of the 3D volume. We
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now move to a second stage of dynamic programming
using volume Y to obtain the disparity map for the
input stereo images. Starting from the bottom of the
3D volume Y , we select the 2D horizontal slice with
i =M -1. From this 2D matrix of size ND, a shortest-
path from left to right or from right to left is obtained
using dynamic programming techniques. The sum of
the values along this path gives the maximum value.
This obtained path is related to the disparities for the
last or bottom row of the input image.

We then move from the bottom slice of Y upwards.
When calculating the disparity for row number i-1, we
use the result obtained for row number i. We now select
the horizontal slice number i-1 of the 3D volume Y , and
mask out those values which are more than p position
away from the shortest-path obtained from row number
i. Then a new shortest-path is obtained in this 2D
matrix from left to right which are constrained to lie
inside this region. This process of obtaining shortest-
path is repeated until the disparity for the �rst row of
the image is obtained.

Putting all the shortest-paths for each of the scan
line together forms a 3D surface within the 3D vol-
ume of Y . Because successive shortest-path for each
scan line is obtained in the neighbourhood of the previ-
ous path position, the 3D surface gives more consistent
disparities. The complexity of the STDP algorithm is
linear with respect to the size of the 3D volume, i.e.
O(MND). The algorithm steps for the STDP match-
ing are:

1. Input: the 3D volume of similarity measurement
2. Stage One: vertical dynamic programming to ob-

tain the intermediate volume Y in the vertical di-
rection:

3. Stage Two: horizontal dynamic programming to
obtain the disparity map:

(a) Select the bottom horizontal slice from the Y
volume

(b) Use dynamic programming technique to �nd
a shortest path in this 2D slice. This path is
related to the disparity map

(c) Select next horizontal slice up in the Y vol-
ume, mask out pixels which are more than p
pixels away from the shortest path obtained
from the previous slice, check to see whether
all the slices have been matched, if not, go to
Step 3b; otherwise go to Step 3d

(d) Put all the shortest paths from each horizon-
tal slice together to form a disparity map.

4 Matching Strategy

4.1 Coarse-to-�ne Scheme

It has been shown that a multi-resolution or pyramid
data structure approach to stereo matching is faster
than one without multi-resolution [22], as the search
range in each level is small. Besides fast computation,
a more reliable disparity map can also be obtained by
exploiting the multi-resolution data structure. The up-
per levels of the pyramids are ideal to get an overview
of the image scene. The details can be found down the
pyramid at higher resolution.

In the current implementation, the lower resolution
image is obtained by simply taking the average value
of the corresponding r�r pixels in the previous higher
resolution level for its simplicity. During the process
of projecting the disparity map from the current level
of the pyramid to the next (if current level is not level
0, or the highest image resolution), the disparity image
size was scaled up by the value of r, and the disparity
value was scaled up by the same r. A commonly used
value for r is 2. Note that other values of r such as 3 can
also be used. The disparity value where the position
(i; j) of the next level image is not a multiple of r was
obtained by bilinear interpolation.

The size of the 3D volume is small in this coarse-to-
�ne framework as the disparity search is only necessary
in the neighbourhood of the disparity obtained in the
previous level. In the step of obtaining the disparity
map from the 3D volume, the computation complexity
is only O(MND0), where D0 = 3 in the lower levels of
the image pyramid. This is due to the fact that the
disparity search is local to the initial estimates.

Our new RSR technique which uses the intermediate
disparity map for obtaining the smaller regions works
in the coarse-to-�ne scheme.

4.2 Algorithm Steps

The steps of our proposed algorithm for fast stereo
matching are:

1. Build image pyramids with K levels (from 0 to
K � 1), with the reduction ratio of r, from the
original left and right images; The upper or coarse
resolution levels are obtained by averaging the cor-
responding r�r pixels in the lower or �ner resolu-
tion level;

2. Initialize the disparity map as zero for level k =
K � 1 and start stereo matching at this level;

3. Perform image matching using the method de-
scribed in Sections 2-4 which includes:
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(a) Segment images into rectangular subregions
based on the current disparity map;

(b) Perform fast zero mean normalised correla-
tion to obtain the correlation coeÆcients for
each subregions and build a 3D correlation
coeÆcient volume for the whole image;

(c) Use the two-stage dynamic programming
technique to �nd the maximum surface,
which will then give the disparity map as de-
scribed in Section 3.

4. If k 6= 0, propagate the disparity map to the next
level in the pyramid using bilinear interpolation,
set k = k�1 and then go back to Step 3; otherwise
stop.

5 Experimental Results

This section shows some of the results obtained us-
ing the method described in this paper. A variety of
images have been tested, including synthetic images
and di�erent types of real images. The input left and
right images are assumed to be recti�ed epipolar im-
ages. Therefore, matching points lie on the same hor-
izontal scan line. The positions of the input left and
right images have been swapped so that cross eye view-
ing becomes easier. Implementations of the Roy's [29],
Cox's [11] and Sun's [33] methods are used for com-
parison. The codes for Roy's and Cox's methods are
downloaded from their web pages.

Synthetic Images

Figure 4 gives the results of algorithms in [33] and
our new algorithms running on a pair of synthetic im-
ages. The top row shows the input left and right im-
ages. Figure 4(c) is the result obtained using our earlier
method presented in [33]. Figure 4(d) shows the result
using the method described in this paper. Shown in
the top row are images of a concrete sphere on a table.
The size of this pair of images are 256�256. It can
be seen from this �gure that our new 3D maximum
surface method using TSDP gives better results.

Random dot stereogram (RDS)

A pair of random dot stereogram images are shown
in Figure 5(a,b). The stereo matching results for our
new method, Roy's, Cox's and Sun'97 methods are
given in Figure 5(c,d,e,f). Among these four methods,
only Cox's method explicitly formulated stereo occlu-
sions. The results in (c) and (f) are very similar, but
the running times as will be shown later are di�erent.
The main di�erences of the disparity estimates using
this pair of RDS image for these four methods are at
the discontinuity boundaries.

Real Images

(a) (b)

(c) (d)

Figure 4: The matching result for a pair of synthetic
images. The image sizes for the �rst row are 256�256.
The top row gives the images of a sphere on a ta-
ble. (a) right images; (b) left images; (c) the disparity
maps recovered using method in [33]; and (d) the dis-
parity maps recovered using our new method. (Images
(a,b) courtesy of Bill Ho� at the University of Illi-
nois [16]. Images (e,f) courtesy of Computer Vision
Group, Computer Science III, University of Bonn)

(a) RDS right (b) RDS left (c) RSR+TSDP

(d) Roy's method (e) Cox's method (f) Sun'97

Figure 5: Synthetic random dot stereogram. (a) and
(b) are the right and left input images. (c) shows our
result using the algorithm described in this paper; (d)
result obtained using Roy's method; (e) result obtained
using Cox's method; and (f) result obtained using Sun's
method described in [33].

Figures 6-8 show some results using real images.

Park meter: The input images shown in Fig-
ure 6(a,b) are the frames 2 and 14 of the park meter
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sequence. The matching results for our new method,
Roy's, Cox's and Sun'97 methods are given in Fig-
ure 6(c,d,e,f).

(a) pm-14 (b) pm-2 (c) RSR+TSDP

(d) Roy's method (e) Cox's method (f) Sun'97

Figure 6: Park meter scene. (a) and (b) are the right
and left input images. (c) Results obtained using our
new method (RSR+TSDP). (d) Results obtained us-
ing Roy's method. (e) Results obtained using Cox's
method. (f) The matching results using the method de-
scribed in [33]. (Images (a,b) courtesy of CMU).

Pentagon: The input images are shown in Fig-
ure 7(a,b). The matching results for our new method,
Roy's, Cox's and Sun'97 methods are given in Fig-
ure 7(c,d,e,f).

Fruit scene: The input images are shown in Fig-
ure 8(a,b). The matching results for our new method,
Roy's, Cox's and Sun'97 methods are given in Fig-
ure 8(c,d,e,f).

From the results shown in Figures 6, 7 and 8, it
can be seen that our new RSR+TSDP method gives
better results than the other three methods. Many
other types of real images have also been tested, and
good results have been obtained. Figure 9 gives some
of the results obtained by using our new RSR+TSDP
method described in this paper. The image shown in
Figure 9(a) is a picture of softball on newspaper. Fig-
ure 9(b) shows a bent circuit board. Figure 9(c) shows
an aerial photo with houses in the image.

Running Times

The computer used is a 500MHz Pentium III run-
ning Linux. The algorithm was implemented in the C
language without using any hardware supports or as-
sembly languages. The typical running time for the
algorithm on a 256�256 image is in the order of sev-
eral hundred milliseconds. Table 1 gives some of the
typical running times of the algorithm on di�erent size
of images with di�erent disparities using whole image

(a) pentagonR (b) pentagonL (c) RSR+TSDP

(d) Roy's method (e) Cox's method (f) Sun'97

Figure 7: Pentagon stereo. (a) and (b) are the right
and left input images. (c) Results obtained using our
new method (RSR+TSDP). (d) Results obtained us-
ing Roy's method. (e) Results obtained using Cox's
method. (f) The matching results obtained using the
method described in [33]. (Images (a,b) courtesy of
Bill Ho� at the University of Illinois [16]).

(a) fruitR (b) fruitL (c) RSR+TSDP

(d) Roy's method (e) Cox's method (f) Sun'97

Figure 8: Fruit stereo. (a) and (b) are the right
and left input images. (c) Results obtained using our
new method (RSR+TSDP). (d) Results obtained us-
ing Roy's method. (e) Results obtained using Cox's
method. (f) The matching results obtained using the
method described in [33]. (Images (a,b) courtesy of
Bill Ho� at the University of Illinois [16]).

correlation and the RSR methods. The size of the cor-
relation window used for the images shown in the ta-
ble is 9�9. The reduction ratio r used in the pyramid
generation process is 2. The time shown in the table
includes the time for the pyramid building process and
the time for image reading and writing. For exam-
ple, for the \ball" image of size 256�256 as shown in

7



(a) ball (b) circuit (c) at

Figure 9: Three images (only left) and the disparity
maps obtained. The top row gives the left images of
stereo pairs. The bottom row shows the disparity map.
The image size in (a) is 256�256; The image size in (b)
is 512�512; The image size in (c) is 1000�1000. (In-
put images (a,b) courtesy of Bill Ho� at the University
of Illinois [16]; input images (c) courtesy of Stuttgart
ISPRS Image Understanding datasets).

Figure 9(a), the program only takes 0.32 seconds. It
only takes 1.39 seconds to obtain the disparity for the
\pentagon" image of size 512�512.

The time shown for \User time1" is obtained with-
out using the RSR method as described in Section 2.1,
while the time shown for \User time2" is obtained by
using the RSR method. It can be seen that the time
spent by the algorithm using RSR method is almost
half of the time without using the RSR method. The
amount of time saved depends on the shape of the ob-
jects. Interested readers could try our algorithm using
their own images by accessing the web page given in
Section 8.

Table 2 gives some of the typical running times of
the 2D matrix and 3D maximum surface algorithms on
di�erent size of images. Other parameters used such
as pyramid levels, disparity search ranges, image sizes,
are given in the table. The last two columns in the ta-
ble show the timings of the algorithm described in [33]
(Method 2D path) and the algorithm described in this
paper (Method 3D surface). There is not much di�er-
ence in the speed of the two algorithms. One might
expect to see that the execution time for our new algo-
rithm is much longer than that of the 2D path method
because of the need for the extraction of 3D maxi-
mum surface. The computation time for the 3D surface
method is only slightly longer than that of the 2D path
method.

Table 3 shows the computation times for Roy, Cox

Table 1: Running times of the whole image correla-
tion and the RSR algorithms on di�erent images. The
dynamic programming stage of this test runs on 2D
matrix. The size of the correlation window is 9�9.
The reduction ratio r used in the pyramid generation
process is 2. The pyramid levels used are 3 for the
�rst three images and 4 for the last image. The ball,
circuit and flat images are shown in Figure 9. The
pentagon image is shown in Figure 7(a)(b).

Image Image Search Disp. User User
name size range range time1 time2
ball 256�256 [-4,4] [-19,7] 0.53s 0.32s

pentagon 512�512 [-2,2] [-10,10] 2.42s 1.39s
circuit 512�512 [-5,5] [-21,23] 3.36s 1.59s

flat1000�1000 [-3,3] [-31,23] 16.86s 7.51s

Table 2: Running times of the algorithm on di�erent
images. The size of the correlation window is 9�9.
The reduction ratio r used in the pyramid generation
process is 2. Both of these algorithms use RSR. The
pyramid levels used are 3 for the �rst three images and
4 for the last image.

Image Image Search Disp. Method Method
name size range range 2D path 3D surf.
ball 256�256 [-4,4] [-19,7] 0.32s 0.37s

pentagon 512�512 [-2,2] [-10,10] 1.39s 1.50s
circuit 512�512 [-5,5] [-21,23] 1.59s 1.82s

flat1000�1000 [-3,3] [-31,23] 7.51s 7.53s

and our algorithms on three pair of images. Roy's algo-
rithm takes much longer to �nish compared with other
two algorithms. Our method is also much quicker than
Cox's method. The reason that our new algorithm can
achieve fast computational speed will be discussed in
the next section.

Table 3: Running times of di�erent algorithms. The
RDS image is shown in Figure 5(a,b). The pm image is
shown in Figure 6(a,b). The pentagon image is shown
in Figure 7(a,b).

Image Image Disp. Roy's Cox's Our
name size range method method method

RDS 300�300 10 300.63s 1.44s 0.45s
pm 512�480 25 374.83s 4.28s 1.75s

pentagon 512�512 25 462.47s 5.43s 1.62s
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6 Reliability and Speed

The reliable results of our algorithm are achieved by
applying the combination of the following techniques:
(1) Coarse-to-�ne strategy is used. (2) The ZNCC sim-
ilarity measure is used, which is independent of di�er-
ences in brightness and contrast. (3) The correlation
coeÆcient value is used as input to the dynamic pro-
gramming stage. (4) Dynamic programming technique
is used to �nd a maximum-surface in the correlation
volume. By using the two-stage dynamic programming
technique on the input correlation coeÆcient volume,
one will obtain a more smooth surface within the vol-
ume. The maximum surface method takes all the in-
formation into account, rather than work individually
for each of the epipolar lines.

The fast computational speed of our algorithm is
achieved in conjunction with some of the aspects men-
tioned above for achieving reliability of the algorithm.
Some of the aspects are: (1) Fast zero mean normal-
ized cross correlation is used. The original idea of box-
�ltering for calculating image mean was developed fur-
ther for fast calculation of image variance at the same
time when one calculates the image mean. (2) We
have used a rectangular subregioning technique for fast
computation of correlation coeÆcients. (3) Apart from
having the advantages of increasing the reliability, the
coarse-to-�ne approach is also faster than one without
using it. (4) A two-stage dynamic programming tech-
nique is used to �nd a maximum surface in the 3D
correlation volume. Rather than using the methods
described in [30, 9], a dynamic programming technique
is used which is computationally eÆcient.

7 Conclusions

We have developed a fast and reliable stereo matching
method using rectangular subregioning, fast correla-
tion and maximum-surface techniques in the coarse-to-
�ne framework. The fast cross correlation method was
developed from the box-�ltering idea. The time spent
in the stage for obtaining the normalized cross correla-
tion is almost invariant to the search window size. The
processing speed is further improved by segmenting the
input image into subimages and work with the smaller
images which tend to have smaller disparity ranges.
This new subregioning technique is also helpful to re-
duce the memory storage space. The maximum-surface
is obtained from the 3D correlation volume using a new
two-stage dynamic programming technique. There are
two original contributions in this paper. The �rst is
the rectangular subregioning (RSR) method for further
speeding up the correlation calculation. The second is

the two-stage dynamic programming (TSDP) method
for 3D surface extraction for disparity estimation. The
typical running time for a 512�512 image is in the or-
der of a few seconds. The algorithm is implemented
in the C language on standard computers, and no spe-
cial hardware is used. The algorithm was shown to be
fast and reliable by testing on several di�erent types of
images: both synthetic and real images.

8 Web Demo

There is a web page setup to allow interested readers
to run our fast stereo matching algorithm using their
own stereo images. The web demo address is at:
http://extra.cmis.csiro.au/IA/changs/stereo/

Acknowledgement

The author is grateful to the author or owners of the
images used in this paper. We thank the colleagues
at CSIRO Mathematical and Information Sciences for
many useful discussions and suggestions.

References

[1] P. Anandan. A computational framework and an algo-
rithm for the measurement of visual motion. Techni-
cal Report 87-73, Computer and Information Science,
University of Massachusetts at Amherst, August 1987.

[2] P. Aschwanden and W. Guggenb�uhl. Experimen-
tal results from a comparative study on correlation-
type registration algorithms. In W. F�orstner and
S. Ruwiedel, editors, Robust Computer Vision, pages
268{289. Wichmann, 1992.

[3] R. Baldwin, H. Yamada, and K. Yamamoto. Disparity
space and dynamic programming for automatic pro-
duction of very dense range maps. In A. Gruen and
E. Baltsavias, editors, Close-Range Photogrammetry

Meets Machine Vision, volume 1395, pages 217{225,
Zurich, Switzerland, 3-7 September 1990. SPIE.

[4] J. Banks, M. Bennammed, and P. Corke. Fast and
robust stereo matching algorithms for mining automa-
tion. Digital Signal Processing, 9:137{148, 1999.

[5] D. I. Barnea and H. F. Silverman. A class of algorithms
for fast digital image registration. IEEE Transactions

on Computers, C-21:179{186, 1972.

[6] A. Bensrhair, P. Mich�e, and R. Debrie. Fast and auto-
matic stereo vision matching algorithm based on dy-
namic programming method. Pattern Recognition Let-

ters, 17:457{466, 1996.

[7] S. Birch�eld and C. Tomasi. Depth discontinuities by
pixel-to-pixel stereo. International Journal of Com-

puter Vision, 35(3):269{293, 1999.

9



[8] A. F. Bobick and S. S. Intille. Large occlusion stereo.
International Journal of Computer Vision, 33(3):181{
200, 1999.

[9] Q. Chen and G. Medioni. Building human face models
from two images. In Multimedia Signal Processing,
Redonda Beach, CA, 1998.

[10] http://www.ri.cmu.edu/projects/project 53.html.

[11] I. Cox, S. Hingorani, S. Rao, and B. Maggs. A max-
imum likelihood stereo algorithm. Computer Vision

and Image Understanding, 63(3):542{567, May 1996.

[12] O. Faugeras, B. Hotz, H. Mathieu, T. Vi�eville,
Z. Zhang, P. Fua, E. Th�eron, L. Moll, G. Berry,
J. Vuillemin, P. Bertin, and C. Proy. Real time
correlation-based stereo: Algorithm, implementations
and applications. Technical Report RR-2013, INRIA,
1993.

[13] P. Fua. A parallel stereo algorithm that produce dense
depth maps and preserves image features. Machine

Vision Applications, 6(1):35{49, 1993.

[14] A. Fusiello, V. Roberto, and E. Trucco. EÆcient
stereo with multiple windowing. In Proceedings of

Computer Vision and Pattern Recognition, pages 858{
863, Puerto Rico, June 1997. IEEE Computer Society
Press.

[15] G. L. Gimel'farb, V. M. Krot, and M. V. Grigorenko.
Experiments with symmetrized intensity-based dy-
namic programming algorithms for reconstructing dig-
ital terrain model. International Journal of Imaging

Systems and Technology, 4:7{21, 1992.

[16] W. Ho� and N. Ahuja. Surfaces from stereo: Integrat-
ing feature matching, disparity estimation, and con-
tour detection. IEEE Transactions on Pattern Analy-

sis and Machine Intelligence, 11(2):121{136, February
1989.

[17] S. Intille and A. Bobick. Disparity-space images and
large occlusion stereo. In Proceedings of European

Conference on Computer Vision, Stockholm, Sweden,
1994.

[18] D. G. Jones and J. Malik. Computational framework
for determining stereo correspondence from a set of
linear spatial �lters. Image and Vision Computing,
10(10):699{708, December 1992.

[19] Y.-S. Kim, J.-J. Lee, and Y.-H. Ha. Stereo matching
algorithm based on modi�ed wavelet decomposition
process. Pattern Recognition, 30(6):929{952, 1997.

[20] M. I. Kolesnik. Fast algorithm for the stereo
pair matching with parallel computation. In
D. Chetverikov and W. G. Kropatsch, editors, 5th In-

ternational Conference on Computer Analysis of Im-

ages and Patterns, pages 533{537, Budapest, Hun-
gary, September 13-15 1993. Springer-Verlag.

[21] C. Konecny and D. Pape. Correlation techniques and
devices. Photogrammetric Engineering and Remote

Sensing, 47(3):323{333, March 1981.

[22] K. S. Kumar and U. B. Desai. New algorithms
for 3D surface description from binocular stereo us-
ing integration. Journal of the Franklin Institute,
331B(5):531{554, 1994.

[23] Y. Ohta and T. Kanade. Stereo by intra- and inter-
scanline search using dynamic programming. IEEE

Transactions on Pattern Analysis and Machine Intel-

ligence, PAMI-7:139{154, March 1985.
[24] http://www.ptgrey.com/.
[25] B. Porr, A. Cozzi, and F. W�org�otter. How to `hear'

visual disparities: real-time stereoscopic spatial depth
analysis using temporal resonance. Biological Cyber-

netics, 78(5):329{336, 1998.
[26] M. Rechsteiner, B. Schneuwly, and G. Troester. Dy-

namic workspace monitering. In H. Ebner, C. Heipke,
and K. Eder, editors, International Archives of Pho-

togrammetry and Remote Sensing, volume 30, pages
689{696, Munich, Germany, September 1994.

[27] A. Rojas, A. Calvo, and J. Mu~noz. A dense disparity
map of stereo images. Pattern Recognition Letters,
18(4):385{393, 1997.

[28] A. Rosenfeld and A. C. Kak. Digital Picture Process-

ing, volume II. Academic Press, New York, second
edition, 1982.

[29] S. Roy. Stereo without epipolar lines: A maximum-
ow formulation. International Journal of Computer

Vision, 34(2/3):147{161, 1999.
[30] S. Roy and I. J. Cox. A maximum-ow formulation

of the N-camera stereo correspondence problem. In
Proceedings of International Conference on Computer

Vision, pages 492{499, Bombay, India, January 1998.
IEEE.

[31] D. Scharstein and R. Szeliski. Stereo matching with
nonlinear di�usion. International Journal of Com-

puter Vision, 28(2):155{174, 1998.
[32] http://www.ai.sri.com/~konolige/svs/.
[33] C. Sun. A fast stereo matching method. In Digital Im-

age Computing: Techniques and Applications, pages
95{100, Massey University, Auckland, New Zealand,
December 10-12 1997.

[34] C. Sun. Multi-resolution rectangular subregioning
stereo matching using fast correlation and dynamic
programming techniques. Technical Report 98/246,
CSIRO Mathematical and Information Sciences, Aus-
tralia, December 1998.

[35] G.-Q. Wei, W. Brauer, and G. Hirzinger. Intensity-
and gradient-based stereo matching using hierarchical
Gaussian basis functions. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 20(11):1143{
1160, November 1998.

[36] Q. X. Wu. A correlation-relaxation-labeling frame-
work for computing optical ow | template match-
ing from a new perspective. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 17(8):843{
853, September 1995.

[37] Y. Yang and A. L. Yuille. Multilevel enhancement
and detection of stereo disparity surfaces. Arti�cial

Intelligence, 78(1{2):121{145, October 1995.
[38] C. Zitnick and T. Kanade. A volumetric iterative

approach to stereo matching and occlusion detection.
Technical Report CMU-RI-TR-98-30, Robotics Insti-
tute, Carnegie Mellon University, December 1998.

10


