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An algorithm for automated extraction of linear feature boundaries in 2D images is presented. From a
marker set approximating the medial axis, we generate 1D gradient profiles orthogonal to linear features.
The algorithm uses dual shortest paths through an image generated from gradient profiles to extract
boundaries. The algorithm offers an alternative to a watershed type approach and performs well on
images with noise and areas of low contrast. We present the results of our algorithm on microscopy
images of neurite outgrowth and other images containing linear features.
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1. Introduction

The detection of linear features in images is an important activ-
ity in the fields of image analysis, pattern recognition and com-
puter vision. Applications are widespread in many realms from
remote sensing, microscopy and asset monitoring to biomedical
applications. Our particular interest is the detection of linear fea-
tures in fluorescence microscopy images such as neurite outgrowth
in neurons. In this application it is becoming increasingly impor-
tant to not only count and measure the length of features, but also
to extract an accurate boundary for width measurement and for
generating masks for co-localisation measurements. The thickness
and tapering of neurites is linked with the neuron’s electrophysio-
logical response. Measuring neurite thickness is therefore impor-
tant to support modelling efforts in this area.

There are many existing techniques for linear feature detection
in the literature. Thresholding and skeletonisation is a simple
method employed, for example by Kim and Gillies (1998) on neural
cells. Ridge detection techniques (Eberly, 1996) are used exten-
sively in this area. Guo and Richardson (1998), for example, use
ridge detection to find vessels in angiogram images. Exploiting
the differential geometry of images, which are treated as surfaces,
forms another set of techniques such as those used by Monga et al.
(1997) to find linear features in satellite and medical images. Meij-
ering et al. (2004) use differential geometry as the basis of a meth-
od for neurite outgrowth analysis. Filtering using mathematical
morphology is another effective approach. Soille and Talbot
008 Published by Elsevier B.V. All
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(2001) use directional morphological filtering to detect linear
features.

Approaches to linear feature detection often do not produce fea-
ture boundaries but instead produce markers or skeletal represen-
tations of linear features. The work described in this paper focuses
on using these markers to extract the boundaries of linear features.
Eiho and Qain (1997), after finding markers for a coronary tree
semi-automatically using mathematical morphology, extract fea-
ture boundaries using a watershed transformation (Soille, 2003,
Section 9.2). Results using a watershed approach can suffer from
flooding problems where noise, poor contrast or gaps in linear fea-
tures exist. Flooding occurs when boundary information is weak
and the extracted boundary leaks into the background, see Fig.
3(b). Sonka et al. (1995), using manually identified markers, extract
coronary boundaries using a graph searching technique. The graph
is constructed from an edge enhanced image produced by a combi-
nation of Sobel and Marr-Hildreth operators. The graph searches
simultaneously for left and right borders.

This paper proposes an algorithm for automatically extracting
the boundaries of linear features in 2D images. Firstly, suitable
markers for each linear feature are detected by either an auto-
mated process or by manual tracing. The markers are skeletonised
and used to estimate local orientation of the features. We then ana-
lyse the 1D gradient profiles normal to the local feature orienta-
tion. Our algorithm stacks the gradient profiles of a feature into a
newly constructed image and uses dual path extraction, as
proposed in (Sun and Appleton, 2005), to find the feature
boundaries.

Due to constraints we can impose on the dual paths, for
example maximum feature width, and the smoothness inherent
in shortest paths, our feature boundaries are robust to noise
rights reserved.
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Fig. 2. (a) A single linear feature. (b) Its boundaries extracted using dual paths. (c) A
subsection of the stack of 1D gradient profiles. (d) The dual paths found through the
subsection.

1754 R. Lagerstrom et al. / Pattern Recognition Letters 29 (2008) 1753–1757
degradation or flat areas of an image. A watershed type approach
would suffer flooding problems in the presence of these issues.

We present results of our boundary extraction algorithm on
microscope images of neurite outgrowth from cells and on a range
of images containing linear features from various applications.

2. Boundary extraction using dual paths through 1D gradient
profiles

In this section we detail our algorithms for boundary extraction
of linear features from marker sets using dual paths through 1D
gradient profiles.

2.1. Marker sets

Before extracting boundaries, we require markers for each lin-
ear feature. The markers need to be thin, skeleton-like and span
the length of each feature of interest. Any of the techniques for lin-
ear feature detection described in Section 1 may be used to gener-
ate the marker set. Alternatively, manual tracing of each feature
center line can be used.

For automated linear feature detection, we use the multiple
directional non-maximum suppression (MDNMS) technique pro-
posed in (Sun and Vallotton, 2006). The result of MDNMS forms
the basis of our markers for the linear features. The markers are
skeletonised (Soille, 2003, Section 5.4) allowing us to separate dis-
tinct linear features by removing pixels which have more than two
neighbours i.e. branching points. Each distinct linear feature is gi-
ven a label, and is stored in an image where the pixel value is the
label of the feature. The skeletonisation also facilitates local orien-
tation estimation. Fig. 1(b) shows a marker set automatically gen-
erated using this method. The results of manually tracing features
can similarly be skeletonised to form marker sets.

2.2. Local orientation and 1D profiling

Our algorithm for boundary extraction relies on the generation
of 1D profiles normal to the orientation of the linear feature. To do
this, we traverse along pixels in the marker set for each linear fea-
ture. At each pixel, we look at the two pixels with the same feature
label that are a user supplied distance, D, before and after the pixel
of interest. The orientation is then estimated as the angle between
the horizontal and the line segment joining these two pixels. In the
event that a pixel is less than D pixels from the end of a feature, we
estimate orientation using the terminating pixel in the feature. The
orientation estimates are sensitive to the choice of the value D,
Fig. 1. (a) Neuron image, stained for tubulin (Courtesy of J. Gunnersen, Howard Flor
suppression. (c) Boundaries extracted via the dual paths approach.
however the overall algorithm only requires that the estimated ori-
entation leads to a profile that traverses the boundaries of a linear
feature. Values of D less than 3 tend to give noisy orientation esti-
mates. We typically set D equal to R, which is discussed in the next
paragraph. More robust approaches to estimating local orientation,
such as using digital straight lines, may be appropriate but come at
a computational cost.

At each pixel, a line with orientation normal to the feature is
generated based on the pixel’s local orientation estimate. We use
Bresenham lines (Bresenham, 1965) to generate the discrete lines
which extend a user supplied distance, R, on each side of the fea-
ture. The lines sample the pixel values in the original image. The
algorithm is sensitive to the choice of R. This parameter needs to
be set to a value greater than the radius of the thickest linear fea-
ture in the image. We then compute a gradient along each line
ey Institute). (b) Marker set, generated using multiple directional non-maximum
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using the first derivative weighted by a function of the distance to
the center of the feature:

Gj ¼WjðIjþ1 � Ij�1Þ ð1Þ

where Ij is the pixel value in the original image along the Bresen-
ham line at offset index j. The offset index has values
j ¼ �R; . . . ;R. The weight at a particular offset is

Wj ¼ ðR� jjjÞ=R ð2Þ

The weighting penalises high gradient values with large distances
from their marker. This is useful in that it favours boundaries which
are close to their marker in situations where there are multiple fea-
tures within distance R from each other.

2.3. Dual paths through orthogonal gradient profiles

To extract the boundary of a linear feature, the 1D gradient pro-
files described in Section 2.2, at each pixel along the marker, are
stacked into an image for each feature. Each row of this image cor-
responds to a gradient profile orthogonal to the marker set. In an
ideal case, we would see two distinct lines from the top of the im-
age to the bottom. One of these lines would have high values cor-
responding to large positive gradients. The other line would have
high negative values corresponding to large negative gradients.
Fig. 2(c) shows a stack of gradient profiles for the linear feature
in Fig. 2(a).

Finding these two distinct lines is a shortest path problem. Sun
and Appleton (2005) propose a method for concurrently detecting
multiple shortest paths in images. This approach allows us to con-
strain the regularity of the detected paths for disjointedness, min-
imal spacing and maximal spacing. Sun and Appleton’s method
uses an expanded trellis as a search space for multiple paths. The
expanded trellis is constrained by a number of geometric and heu-
ristic properties that significantly reduce the complexity and com-
putational burden of the problem.

The cost function for a dual path is the sum of the cost functions
of the two single paths as given below:

C ¼
Xm

i¼1

Gji þ
Xm

i¼1

ð�1ÞGki ð3Þ

where ji and ki are the column position of two paths j and k at row i.
Gji is the value in the gradient profile image at row position i and
column position j. The number of rows in the image is represented
Fig. 3. (a) Neuron image, stained for tubulin (Courtesy of J. Gunnersen, Howard Florey Ins
via the dual paths approach.
by m and corresponds to the number of gradient profiles. The fol-
lowing constraints ensure path continuity:

jji � jiþ1j 6 A;

jki � kiþ1j 6 A;

while the following constraint ensures the paths are distinct:

ki � ji > 1:

The value of A used in the path continuity constraint is 1. In situa-
tions where feature boundaries are irregular or not smooth, this
constraint can be relaxed by increasing A to 2 or even 3. However,
such an increase comes with a computational cost. The multiplica-
tion by negative one of the gradient values, Gki, in the second term
of Eq. (3), guarantees that paths ji and ki correspond to positive and
negative gradients respectively. Fig. 2(d) shows the dual paths ex-
tracted from the gradient profile stack in Fig. 2(c).

Once both paths are detected in the gradient profile image and
the extracted paths are mapped back into the original image, path
connectivity may be lost. We restore it using a morphological clos-
ing with a disc of diameter 3 as a structuring element. The size of
the disc was chosen empirically using images of neurites. Neurites
do not possess high curvature and it may be necessary to increase
this parameter in situations where high curvature is expected.
Alternatively, the end points can be joined Bresenham line seg-
ments. Fig. 2(b) shows the extracted paths from Fig. 2(d) mapped
into the original image.

Fig. 1(c) shows the result of using this approach to find the
boundaries of the features in Fig. 1(a) based on the marker set
shown in Fig. 1(b).

3. Experimental results

In this section we present results obtained on images of neurite
outgrowth and on a range of images containing linear features
from various domains.

3.1. Application to neurite outgrowth

The performance of the algorithm was assessed on images of
neurite outgrowth. Typically, automated software for quantifying
neurite structure does not include width estimates or full segmen-
tation of neurite structure. Instead, only skeletal representations of
neurites are supplied. Generating width estimates for neurites
titute). (b) Boundaries extracted via a watershed approach. (c) Boundaries extracted



Fig. 4. Plot of taper width along four different neurite segments from Fig. 3(c).
Width values are slightly offset for clarity.
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allows neuroscientists to automatically discriminate between ax-
ons and dendrites, and to profile taper width along neurite struc-
tures as they extend away from their parent cell. The extraction
of neurite boundaries, along with the subsequent generation of
neurite masks, facilitates co-localisation measurements of proteins
along the neurite structure.

Two sets of images were used in this study. The first image set
consisted of embryonic cortical neurons in culture from Sez-6 null
mice. We used the MDNMS approach to generate marker sets for
these images. In this example, a line segment length of 15 at 8 an-
gles was used for MDNMS method. An example image from this set
is shown in Fig. 1(a) with the result of our approach shown in Fig.
1(c). The parameters R and D were both set to 7. The approach per-
forms well on these images.

The second image set consisted of neurons transfected with an
Enhanced Yellow Fluorescence Protein expressing vector. Transfec-
ted neurons are plated out together with untransfected neurons so
the imaged neurons are effectively sitting on another layer of cells.
This makes them harder to trace so we manually generated a mar-
ker set for these images. An example image from this set is shown
in Fig. 3(a). Fig. 3(b) shows the result of applying a watershed algo-
rithm to extract boundaries. The watershed is performed on a So-
bel gradient of the image using the marker set as the foreground
seeds. The background seeds are formed from the complement of
a dilation of the marker set with radius R, the width parameter
used in our method. The approach yields poor boundaries due to
the flooding problems caused by noise and saturation. Fig. 3(c)
shows the boundaries extracted using the dual paths method.
Fig. 5. (a) An image of synaptophysin, appearing as bright dots, alonng neurons (Courtesy
of the neurons, shown in grey, and synapses which are shown in black.
The parameters R and D were both set to 7. Compared to the wa-
tershed approach, there is a vast improvement. The detected
boundaries follow the actual object boundaries closely in most
instances.

For an image of dimensions 512 by 512 pixels, on an Intel Pen-
tium 4 with 2.66 GHz CPU, the watershed approach takes around
0.1 s. The dual paths method takes around 2 s for the above exam-
ples. This method is dependent on the density of features and can
take over 10 s for some dense images.

One of the main objectives of this work was to estimate the
width of linear features. The width of a feature at any point is esti-
mated by the Euclidean distance between the two boundary pixels
along gradient profiles in the original image. To estimate the aver-
age width of a linear feature, the average of the widths measured at
each pixel along it’s marker in the marker set is calculated. The
evolution of taper width of a neurite as it extends away from its
parent cell is shown in Fig. 4 for a selection of neurites from Fig.
1. For each of four neurite segments, the width at each pixel is plot-
ted and connected by a polygonal line. Also of interest is the ability
to count objects within linear structures. Boundary extraction
facilitates this measurement as we can produce a mask for linear
features. In Fig. 5(a), synapses (stained by synaptophysin) occur
along the neurites (stained by tubulin). After applying our method
to find the boundaries, Fig. 5(b), we can in turn count the number
of black dots (detected synapses) in Fig. 5(c) associated with each
linear feature (detected neurites), shown in grey in Fig. 5(c). This
provides a measure of synapse density.
3.2. Application to other images

We have also applied our algorithm to images from a range of
fields where boundary extraction is required. Figs. 6(a) and (b)
show images of a leaf and the extracted boundaries of the leaf
veins. The parameters R and D were both set to 12. We used
MDNMS to create the marker set in this case with line segment
length of 25 at 8 angles. The results allow us to separate the three
vein classes based on width measurements. Figs. 6(c) and (d)
shows cracks in soil and the results of our boundary extraction ap-
proach. The parameters R and D were both set to 12. The marker
set was generated using the MDNMS aprroach with line segment
length of 25 at 8 angles. From the results we can determine a mea-
sure for cracking severity based on width. Figs. 6(e) and (f) are aer-
ial images of roads and the boundaries extracted when using our
approach. The parameters R and D were both set to 7. The approach
yields reasonable results for determining the boundaries of the
bright and thick roads but tend to overestimate the width of the
thin and dull roads, for example, the road segment in the top center
portion of Fig. 6(e).
of M. Fennel, Wyeth). (b) The result of our boundary extraction method. (c) A mask



Fig. 6. (a) An image of leaf veins. (b) Extracted vein boundaries. (c) An image of soil
cracks. (d) Extracted crack boundaries. (e) An image of roads. (f) Extracted road
boundaries.
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4. Concluding remarks

We have presented an approach to boundary extraction of lin-
ear features. From a marker set, we generate 1D gradient profiles
orthogonal to each pixel in the marker. Our approach stacks the
profiles into an image and finds dual shortest paths to extract
boundaries. The approach compares favourably to standard wa-
tershed techniques. We assessed the new technique on images of
neurite outgrowth to produce masks of neurites and measure
tapering. We also showed the possibilities of the method on a
range of images containing linear features.

Acknowledgements

The authors would like to thank J. Gunnersen of the Howard
Florey Institute, University of Melbourne and M. Fennel of Wyeth,
Princeton, New Jersey, for kindly providing images for this work.

References

Bresenham, J., 1965. Algorithm for computer control of a digital plotter. IBM
Systems J. 4 (1), 25–30.

Eberly, D., 1996. Ridges in Image and Data Analysis. Kluwer, Norwell.
Eiho, S., Qain, Y., 1997. Detection of coronary artery tree using morphological

operator. IEEE Comput. Cardiol. 24, 525–528.
Guo, D., Richardson, P., 1998. Automatic vessel extraction from angiogram images.

IEEE Comput. Cardiol. 25, 441–444.
Kim, J., Gillies, D., 1998. Automatic morphometric analysis of neural cells. Machine

Graph. Vision 7, 693–709.
Meijering, E., Jacon, M., Sarria, J.-C.F., Steiner, P., Hirling, H., Unser, M., 2004. Design

and validation of a tool for neurite tracing and analysis in fluorescence
microscopy images. Cytometry 58A (2), 167–176.

Monga, O., Armande, N., Montesinos, P., 1997. Thin nets and crest lines: Application
to satellite data and medical images. Computer Vision Image Understanding 67
(3), 285–295.

Soille, P., 2003. Morphological Image Analysis. Springer, New York.
Soille, P., Talbot, H., 2001. Directional morphological filtering. IEEE Trans. Pattern

Anal. Machine Intell. 23 (11), 1313–1329.
Sonka, M., Winniford, M., Collins, S., 1995. Robust simultaneous detection of

coronary borders in complex images. IEEE Trans. Med. Imag. 14 (1),
151–161.

Sun, C., Appleton, B., 2005. Multiple paths extraction in images using a constrained
expanded trellis. IEEE Trans. Pattern Anal. Machine Intell. 27 (12), 1923–1933.
December.

Sun, C., Vallotton, P. Fast linear feature detection using multiple directional non-
maximum suppression. In: Proc. Internat. Conf. on Pattern Recognition, vol. 2,
IEEE, Hong Kong, 20–24 August 2006, pp. 288–291.


	Boundary extraction of linear features using dual paths through gradient profiles
	Introduction
	Boundary extraction using dual paths through 1D gradient profiles
	Marker sets
	Local orientation and 1D profiling
	Dual paths through orthogonal gradient profiles

	Experimental results
	Application to neurite outgrowth
	Application to other images

	Concluding remarks
	AcknowledgementAcknowledgements
	References


