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Abstract

We present a knowledge-based approach to segmentation and analysis of the lung boundaries in chest X-rays. Image edges are matched to
an anatomical model of the lung boundary using parametric features. A modular system architecture was developed which incorporates the
model, image processing routines, an inference engine and a blackboard. Edges associated with the lung boundary are automatically
identified and abnormal features are reported. In preliminary testing on 14 images for a set of 18 detectable abnormalities, the system
showed a sensitivity of 88% and a specificity of 95% when compared with assessment by an experienced radiologist.q 1999 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Identification of the lung boundaries in chest radiographs
is a necessary step for detecting abnormalities such as inter-
stitial disease [1,2], pneumothorax [3], cardiomegaly [4]
and pulmonary nodules [5,6].

The aim of this work is to develop an experimental
system which demonstrates a knowledge-based approach
to segmentation and analysis of the lung boundaries in
chest X-ray images.

A clear distinction is made between ‘‘high-level’’ and
‘‘low-level’’ processing. We define low-level processing
as operating on raw image data. In such algorithms, the
input is considered simply as an array of pixel values. We
define high-level processing as operating on data which are
represented in a symbolic, knowledge-based domain.

If high-level analysis is to be applied to image data, then a
high-level representation must be derived. In our approach,
segmentation involves matching low-level image objects to
high-level objects described in a mathematical model of the

relevant anatomy (anatomical model). To compare low- and
high-level objects, a common, intermediate representation
is required, for example using parametric features.

Numerous systems were reported that use of anatomical
knowledge, in the form of constraints on features such as
expected size, shape, texture and relative positions of struc-
tures, to perform image interpretation [7–20]. A number of
systems have dealt specifically with segmenting the lung
fields in chest X-rays [5,6,21–27]. Typically segmentation
is based around thresholding, edge detection and feature-
based pixel classification. Duryea and Boone [21] used a
heuristic edge-tracing approach with validation against
hand-drawn lung contours. Armato et al. [27] used a combi-
nation of gray-level thresholding (both global and local) and
contour smoothing. McNitt-Gray et al. [23] developed a
method using feature-based classification of pixels into
regions such as heart, lung and axilla. These systems are
effective and useful but do not provide a high-level repre-
sentation of the image content. Also, domain knowledge is
embedded as heuristics within the segmentation algorithms,
making it difficult to reapply or extend to other problems.

Images of abnormal anatomy pose a problem for all auto-
mated analysis schemes, particularly cases where expected
anatomical structures are missing, or altered to the point
where they cannot be detected by the available segmenta-
tion routines. Most knowledge-based approaches do not
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represent, or reason with, abnormal variations effectively. In
some systems, fuzzy sets were used to describe possible
ranges of variation in anatomical features, and to quantify
levels of confidence during decision-making [13–19].

Fuzzy sets also allow transformation of numerical feature
values to symbolic descriptions.

In a knowledge-based approach there is a need for
segmentation algorithms, usually a number of them, to inter-
act with the knowledge base. Many computer vision
systems, both medical [17,18] and non-medical [28–31],
have made use of the blackboard approach to communica-
tion and control between the different system components
(‘‘knowledge sources’’), that contribute to the image inter-
pretation. The blackboard is a data structure that stores the
current solution state, and knowledge sources may read
from, and write to, the blackboard in an ‘‘opportunistic’’
manner.

If a symbolic description of the image content can be
derived, there is the possibility of providing high-level deci-
sion support. Many useful non-image based diagnostic and
treatment planning expert systems were reported [32–34].

In this paper we present a system that contributes to two
main areas of this research:

1. A knowledge-based architecture which combines some
aspects of the systems described earlier: an anatomical
knowledge base (model), image processing routines, an
inference engine for decision-making and control, and a
blackboard for communication. Features are used for
comparison and matching of image and model objects,
and a symbolic description of these features is derived to
allow high-level interpretation.

2. Modeling of both normal and abnormal feature values
and an inferencing approach which allows segmentation
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Fig. 1. System architecture and representational spaces.

Fig. 2. Overview of system operation, with blackboard interactions initalics.



and matching, even for highly abnormal lung boundaries.
There is also a strategy for relaxing constraints in cases
where an expected edge cannot be segmented by the low-
level routines.

The knowledge-based method and architecture are the
focus of this paper, with some preliminary results to show
the potential value of such an approach.

2. System overview

The main tasks of the system are to:

• Extract and match image edges to anatomical structures
in the model. A common set of numerical feature values
are derived from both image and model objects, and
comparison and matching occurs in this feature space.

• Derive a symbolic description of the features of matched
edges.

• Perform image analysis and generate a report indicating
suspected abnormalities. High-level rules translate the
symbolic feature descriptions into the natural language
report.

The system architecture is based around the blackboard
approach to problem solving [35]. Since the components
communicate strictly via the blackboard, modularity and
independence of internal data representation are possible.
Fig. 1 shows the system architecture with the model and
image domain representations, and the common feature-
space in which they are compared.

In Fig. 2 we outline the control algorithm in terms of
systematic interactions with the blackboard. Anatomical
structures that are interrelated are grouped for matching,
and identified simultaneously. Opportunistic scheduling
occurs in the step where the next group of anatomical struc-
tures is selected for segmentation (see Section 3.4.1).

3. System elements

3.1. Anatomical model

3.1.1. Organization of the knowledge base
For each anatomical structure to be identified, the system
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Fig. 3. Anatomically labeled chest radiograph showing lung surfaces.

Fig. 4. Semantic network for frames involving the right lung.



uses the following knowledge: name, shape information,
structural relationships to other anatomy and imaging char-
acteristics. The model focuses on the lung boundaries,
which are significant because their shape is determined by
the surrounding anatomy: the domes of the diaphragm,
mediastinal (and cardiac) silhouette, lung apices and costal
margins (bounded by the rib cage) are indicated in Fig. 3.

There are a number of ways in which the domain knowl-
edge can be represented. While the various representations
may be capable of encoding the same information, there are
differences in terms of the case with which application
systems can be built, as well as the extensibility and main-
tainability of the knowledge base.

A rule-based knowledge representation was used in
systems for identifying blood vessels in angiograms
[7,12]. Rules are not a natural representation for many of
the declarative facts required in our knowledge base, and
this limits its effectiveness as described earlier. However,
we use a rule-based approach for generating reports on
abnormalities (see Section 3.4.4).

Voxel-based models or atlases were used to represent
anatomical information, and deformed to fit individual
data from CT and PET images [36]. However, there are
difficulties in representing possible anatomical variations
and voxel classifications are typically derived from a single
cadaver. Some methods for segmenting brain MR images
have attempted to overcome this by using multiple subjects
to create probabilistic spatial distributions of normal anat-
omy [37,38].

In our system, anatomical knowledge is stored in a
declarative model. For each anatomical structure, para-
metric shape and relational attributes are encapsulated in a
frame [39]. The frames have a predefined set of ‘‘slots’’,
corresponding to the attributes, in which parameter values
are stored.

Relationships between anatomical structures are repre-
sented by links between the frames in the model, as in a
semantic network [40]. Relational slots store a pointer to the
related frame and associated parameters. Frame-based
semantic networks were used previously by a number of
groups [8,10,15]. Part of our semantic network, dealing
with the right lung, is shown in Fig. 4. The complete
network consists of 14 frames and 30 relationships.

3.1.2. Parametric description
Here we describe the parameters used to model shape and

structural relationships between anatomical structures.
The shape description is edge based. Edges are modeled

as curves with expected length, position, orientation at the
endpoints, and edge strength as parameters. Lengths are
modeled in centimeters, and are later converted to number
of pixels for a given image. We specify endpoint orientation
relative to an (x, y)-coordinate system, where thex-direction
is to the patient’s left, and they-direction is inferior. Smooth
curvature is assumed between the endpoints. We define the
edge strength as a percentage of the maximum strength of
any edge which is expected in the image. This makes the
parameter less dependent on the method used to compute
edge strength (e.g. image gradient magnitude). Fig. 5 shows
the edges which are included in the model, and Fig. 6 shows
the slots in a model frame.

A vocabulary was defined to model relationships between
anatomical objects. Table 1 shows the relationships and
associated parameters.

3.1.3. Modeling anatomical variability
An important requirement of the knowledge

M.S. Brown et al. / Computerized Medical Imaging and Graphics 22 (1998) 463–477466

Fig. 5. Edges included in the lung boundary model.

Fig. 6. Model frame structure.

Table 1
Relational vocabulary used in the model and associated parameters

Relationship Parameters

Part of
Right of Distance to the right
Left of Distance to the left
Inferior to Inferior distance
Superior to Superior distance
Near (horizontal) Horizontal distance
Near (vertical) Vertical distance
Connected to Distance between endpoints of the edges
Inferior part of Distance below centroid
Superior part of Distance above centroid



representation is the ability to describe anatomical varia-
tions between patients. Each parameter in the model defines
a range of numerical values which are considered possible
(see Section 3.1.3.1), and a fuzzy mapping between numer-
ical values and linguistic (symbolic) descriptions (see
Section 3.1.3.2).

3.1.3.1. Numerical parameter variabilityThe model
describes anatomical variations which can occur owing to
elastic deformations of the lung. It represents variations
such as those caused by structures becoming enlarged
(e.g. cardiomegaly), reduced (e.g. collapsed lung) or
displaced (e.g. by swelling of an adjacent organ).

For each parameter in the model, upper and lower
‘‘deformability limits’’ specify the possible range of values
under natural deformation. This is, and must be, a coarse
description because we are modeling possible, rather than
normal, variations. If the model was more tightly specified,
the system’s ability to recognize unusual anatomy would be
compromised. Because crudely specified deformability
limits are used, they do not have to be redefined for subjects
of different sex or race, and are usable over a wide range of
ages.

3.1.3.2. Linguistic imprecision Anatomical descriptions
are subject to the imprecision of natural-language. Fuzzy

set theory pertaining to linguistic variables [41] allows
representation of this vagueness in mapping between
numerical parameter values and linguistic descriptions.
For each linguistic expression, a fuzzy set is created
which provides compatibility (fuzzy membership) scores
for possible parameter values.

Fuzzy sets were used previously to map numerical values
to symbolic representations for high-level matching in
medical images [13,17,42]. Typically, the same set of
linguistic variables is applied to a given feature for all anato-
mical structures. For example, the linguistic variables,
small, medium andlarge may be used to represent size
for all organs. In our approach, we redefine linguistic vari-
ables for each anatomical structure in the model because, for
example, asmall lung represents different numerical values
from those for asmall thorax. Further, rather than modeling
a structure as beingsmall or large we believe that a more
natural description can be derived relative tonormal, with
structurally unusual variations being modeled as, for exam-
ple, abnormally smallor abnormallylarge. Such a repre-
sentation is based on the assumption that a major part of
diagnosis involves recognizing ‘‘normal’’ anatomy, and
then excluding it from further attention, and therefore
experts are readily able to supply constraints in this form.
Here we are usingabnormalsimply to describe the appear-
ance of a particular feature, at this level there is no implica-
tion that it is necessarily the result of disease.

Consider as an example, the relationship between the
heights of the right and left hemi-diaphragms. Fig. 7
shows an example of fuzzy compatibility functions for the
height parameter, as well as deformability limits. The
normal compatibility function is relatively narrow, however
the deformability limits are a long way apart because the
diaphragm is flexible, i.e. highly deformable. Thus, the
model indicates that under normal conditions the relative
heights of the hemi-diaphragms are quite well-defined, but
a wide range of abnormal variation is possible.

For this preliminary work, the fuzzy compatibility func-
tions and deformability were determined empirically with
guidance from an expert radiologist. They were checked and
refined against measurements made on a training set of 12
chest X-rays. We have found trapezoidal (piecewise linear)
compatibility functions to be sufficiently precise for our
current application. In a statistical approach, such functions
could be generated based on measured feature values from a
set of training images. This would require a representative

M.S. Brown et al. / Computerized Medical Imaging and Graphics 22 (1998) 463–477 467

Fig. 7. Modeling anatomical variability using fuzzy sets and deformability limits.

Table 2
Translation of relational vocabulary to spatial constraints in the image.M
� set of pixels in image mask for dependent object;B � set of pixels in
related (parent) object;P � relationship parameter range (see Table 1);PL

� lower deformability limit;PU � upper deformability limit;Bxmin (y) �
minimumx such that (x, y) [ B; Bxmax (y) � maximumx such that (x, y)
[ B; Bymin (x) � minimumy such that (x, y) [ B; Bymax(x) � maximumy
such that (x, y) [ B

Relationship Meaning in image domain

Right of M � {( x, y)u (Bxmin (y) 2 PU)
, x , (Bxmin (y) 2 PL)}

Left of M � {( x, y)u (Bxmax (y) 1 PL)
, x , (Bxmax (y) 1 PU)}

Inferior to M � {( x, y)u (Bymax (x) 1 PL)
, y , (Bymax (x) 1 PU)}

Superior to M � {( x, y)u (Bymin (x) 2 PU)
, y , (Bymin (x) 2 PL)}

Near (horizontal) M � {( x, y)u (Bxmin (y) 2 PU)
, x , (Bxmax (y) 1 PU)}

Near (vertical) M � {( x, y)u (Bymin (x) 2 PU)
, y , (Bymax (x) 2 PU)}



training set which is difficult because of variations with age,
sex and race, as well as the many different abnormalities
which can occur.

3.2. Image processing

3.2.1. Knowledge guidance
The anatomy which should be present in most medical

images can be stated a priori and anatomical knowledge can
be used to guide segmentation routines to extract specific
structures. Thus, our image processing is primarily model-
driven.

The system uses both a priori (model-derived) and a
posteriori (image-derived) knowledge to spatially constrain
the segmentation of a given anatomical structure. Structural

relationships to previously labeled anatomy are used to
refine an image mask which specifies the image region
where edge extraction should be performed. Table 2 defines
the relational vocabulary in terms of translation to
constraints on pixel coordinates (see Section 3.1.2 for coor-
dinate system).

When an anatomical structure is scheduled for segmenta-
tion, knowledge-based constraints are read from the black-
board and passed to the image processing engine. The
extracted edges are written back to the blackboard as
‘‘candidates’’ for matching to the anatomical structure.

The following constraint parameters are passed to each
edge detection algorithm: strength (see Section 3.1.2 for
definition), orientation (gradient direction), position
(image mask), and length (number of pixels). These
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Fig. 8. (a) Canny edge detection withs � 3; (b) Candidates generated for the right hemi-diaphragm.

Fig. 9. Structure of a blackboard frame.



constraints are passed as numerical ranges, corresponding to
the deformability limits, which are read from the appropri-
ate slots in a blackboard frame.

3.2.2. Edge detection
Canny edge detection is performed, but typically the

expected anatomical structures do not produce a single,
continuous edge. Therefore the image processing engine
applies the Canny operator at multiple resolutions, with
standard deviations,s � 3, 7, 9 (the exact choice of values
is not critical), and uses the following algorithm to generate
candidates by linking different combinations of edge
fragments:

1. apply gradient magnitude (strength) and phase (orienta-
tion) constraints;

2. form edge fragments from continuous sets of points;
3. subdivide (split) edge fragments at points of high curva-

ture; and
4. calculate possible linkages of edge fragments to form

candidates: a linkage can occur if the orientation of a
line joining the end points of the fragments is within
the orientation constraint range, and the overall length
constraint is satisfied.

Fig. 8 shows an example of edge detection for the right
hemi-diaphragm. There will typically be 5–10 edges (candi-
dates) generated for an anatomical structure.

3.3. Blackboard

The blackboard uses frames to store feature-space infor-
mation. For each anatomical structure to be identified, a
frame is created and posted on the blackboard. Slots exist
for storing data derived from both model and image, as well
as matching results produced by the inference engine (see
Fig. 9).

In mapping the model to feature-space, constraints on
feature parameters are derived from the model and written

to blackboard frames. Edges are represented in feature-
space using the same parameters as defined in the model
(see Section 3.1.2). Relational links are created between the
frames as required. Each expected feature value (constraint)
is represented by a ‘‘confidence function’’ (definition and
derivation given in Section 3.4.2.1) and fuzzy sets taken
directly from the model.

3.4. Inference engine

The inference engine performs a number of tasks related
to decision-making within the system:

• scheduling the order in which anatomical structures are
identified;

• selecting the best edge (candidate) for matching to an
anatomical structure;

• deriving symbolic descriptions of feature values; and
• high-level testing for abnormalities and report

generation.

3.4.1. Scheduling
Since the frames on the blackboard are relationally

constrained (linked), object recognition requires the best
combination of candidates to be determined for matching
to the set of frames on the blackboard, as opposed to finding
a best candidate for individual frames independently.

Given the number of frames and candidates which exist,
an exhaustive search of all possible combinations is not
feasible. Alternatively, an ordered search could be applied
where an image structure is matched to a frame, and then
remains fixed and is used to guide the search for other
structures. This is much faster, but may produce sub-optimal
results.

Our scheduling strategy is a compromise between the
exhaustive and ordered searches. It is based on the hierarchy
implied by the relationships in the model. Binary relation-
ships define dependencies, both uni-directional and
‘‘mutual’’ (defined later), between frames on the black-
board. Mutually dependent frames are grouped for search-
ing as follows: a frame,B, is a member of group,G1 if there
is another frame,C [ G1, such thatB andC are mutually
dependent (see Fig. 10). Within a group, an exhaustive
search is carried out to find the best combination of candi-
dates (i.e. best group candidate). The match to frames within
the group is then fixed and then the next group is processed,
giving an ordered search between groups.

The number of a mutual dependencies determines the size
of groups and hence the computation time of the exhaustive
search. For the purpose of forming a group, a relationship is
considered a mutual dependency if two criteria are met:

1. The type of relationship must be defined as a potential
mutual dependency in the relational vocabulary. Many
relationships could sensibly be defined as either a mutual
or uni-directional dependency. For example, we define
connected to as a potential mutual dependency.
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Fig. 10. Example of the grouped search strategy.



Therefore it is appropriate for describing a connection
between structures of similar significance (in terms of
labeling). However, a new uni-directional dependency
would need to be defined for a connection between a
major structure and a smaller or more subtle structure.
Fig. 4 shows which relationships are defined as poten-
tially mutual.

2. The relationship must have a high degree of ‘‘invar-
iance’’, since these are most important in object recogni-
tion. The amount of variability in a relationship is often
determined by the flexibility, or rigidity, of the structures
involved. The degree of invariance is quantified, based
on the model parameter associated with the relationship,
as the ratio of the width (support) of thenormalcompat-
ibility function to the width of the deformability limits. A
relationship is considered a mutual dependency if this
ratio is greater than 0.5.

Only uni-directional dependencies exist between frames
in different groups and the dependencies imply a search
order. A uni-directional dependency is ‘‘usable’’, in terms
of applying constraints on a frame, if a match was made to
its ‘‘parent’’ frame. The next group to be identified is
chosen as the one with the fewest unusable dependencies,
so that as many constraints as possible are available to guide
the segmentation. This grouped search, illustrated in Fig. 10,
is a compromise between speed and an optimal solution.

The formation of the groups is dependent on the relation-
ships stated in the model, and thus has a weakness in that it
assumes the relationships will naturally define a hierarchy
suitable for searching. The advantage is that the method can
be fully automated, allowing the system to compute a sche-
dule for identifying any subset of anatomical structures
described in the model.

3.4.2. Matching
The best candidate for matching to a frame is selected on

the basis of confidence scores. For each feature associated
with a candidate, a confidence is calculated which indicates
how well the candidate satisfies the constraint on that
feature.

There are four issues to be explored in computing a confi-
dence score for a candidate:

1. generating confidence scores for individual constraints;
2. combining these scores into an overall confidence for the

candidate;
3. selecting the best candidate using the confidence scores;

and
4. dealing with the case where no suitable candidates can be

found.

3.4.2.1. Generating confidence scores: confidence
functions For each feature parameter in the model, a
confidence function is derived which maps parameter
values to confidence scores for matching purpose. It is
assumed that each model parameter will have a fuzzy set
defining the linguistic value,normal, and that it will have a
trapezoidal compatibility function. Further, each parameter
should have deformability limits defined. The derived
confidence function is also trapezoidal, such that it has
value 1 wherever the normal compatibility function is
maximum, and decreases linearly to 0 at the deformability
limits as shown in Fig. 11. This gives an a priori
approximation of the range of possible values which a
parameter can take under natural deformation. Invariant
parameters (with narrow deformability limits) have tightly
defined confidence functions, while more variable
parameters will have broad confidence functions.

3.4.2.2. Combining confidence scoresTo generate an
overall confidence score for a candidate, a fuzzy logic
approach is used, i.e. the minimum of the confidence
scores for individual features is taken. This fuzzy logic
method has a potential weakness of being sensitive to the
most poorly satisfied constraint only. Our inferencing
technique addresses this by virtue of the loosely defined
confidence functions (based on deformability limits), so
that all constraints should be satisfied with high
confidence for a valid candidate. Under these conditions
fuzzy logic is an acceptable means of obtaining an overall
confidence measure. Loose definition of constraints may
appear to present a problem in terms of discriminating
between structures, however this is countered by three facts:

• Many structural relationships are naturally invariant, so
they do not have to be initialized loosely.

• Relational (spatial) constraints impose tight a posteriori
constraints in addition to the loosely defined a priori
constraints.

• Combination of many constraints for matching allows
them to be more loose than if a small number were used.

3.4.2.3. Selecting the best candidateThe task is, in fact, to
select the best combination of candidates for a group, rather
than dealing with individual frames independently. A
‘‘group candidate’’ is formed for each possible
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Fig. 11. Initialization of a confidence function using the normal fuzzy set
and deformability limits.



combination of candidates from member frames. The
confidence of a group candidate is computed as the
minimum confidence of its member candidates, and
the best group candidate is selected.

Since our matching strategy uses an ordered search
between groups, without backtracking, there may be some
concern regarding cascading of matching-errors. The
system only allows a ‘‘good’’ match to a frame, otherwise
the frame is labeledunfoundand does not effect the match-
ing of subsequent groups. The system aims for good
matches by using multiple constraints and demanding that
they all be satisfied (via fuzzy logic).

3.4.2.4. Constraint relaxation The system is able to relax
constraints under certain conditions to increase robustness
for noisy, incomplete or unexpected data. If an image edge
predicted by the model cannot be detected by the available
detection algorithms (i.e. the correct edge is not generated),
some (incorrect) candidate edges may still be produced.
These candidates will typically fail to satisfy at least one
constraint, and thus will have zero confidence for matching.
In such cases, all group candidates (for the group to which
the frame belongs) have zero confidence, even though other
frames in the group may have good (correct) candidates.
Constraints on the group must be relaxed if a match is to
be made.

The inference engine relaxes constraints by adding the
unfound candidate to one or more frames in the group,
thereby creating some new group candidates. Theunfound
candidate has the property that for any constraint in which it
is involved (including relational), it yields a confidence
score of 1 (i.e.complete confidence). Thus, if a frame is
labeledunfound, it imposes no constraints on related frames.

The minimum number of frames are labeledunfound, such
that there is at least one new group candidate with non-zero
confidence.

This constraint relaxation is coarse, in the sense that it
effects all constraints associated with a particular frame,
rather than allowing individual constraints to be relaxed.
This is consistent with the assumption that all constraints
must be satisfied. If any one of the constraint fails, then a
candidate cannot, and should not, be matched to the frame.

3.4.3. Symbolic feature description
Features of recognized anatomical structures are

described symbolically using the fuzzy sets defined in the
model. For each parameter value, the system generates a
linguistic value and a compatibility score indicating how
well the description fits the value.

The symbolic representation provides important comple-
mentary information to the confidence scores generated
during matching. While the confidence scores deal with
loosely defined ranges of possibility, the linguistic values
give an assessment against more strict criteria for normality.

3.4.4. High-level rules for reporting abnormalities
The system uses high-level rules to generate reports on

suspected abnormalities based on the symbolic feature
descriptions. Most of the abnormalities we are concerned
with, can be detected by analyzing the lung boundary. We
describe briefly some examples:

X Silhouette sign
An increase in density of the lung (e.g. owing to fluid or
calcification) may cause one, or more, of its interfaces to
become unclear.

X Lobar collapse
Collapse of one of the lobes of the lung can be detected
from the image by the reduction in lung volume and
raised position of the hemi-diaphragm.

X Pleural effusion
Fluid in the pleural space often collects at the base of the
lung, giving a rounded, rather than sharp, costophrenic
angle (where the costal interface meets the dome of the
diaphragm).

X Cardiomegaly
An enlarged heart, the size of which can be estimated
from the image.

We are also interested in detecting abnormalities in lung
density, either asymmetry between the lungs or inhomo-
geneity within one of the lungs. The rules used to detect
specific abnormalities are shown in Table 3. The compat-
ibility scores for the linguistic values are used to calculate a
confidence score, again by fuzzy logic, for each abnormality
reported via the rules.

3.5. Implementation

The system was implemented on a Silicon Graphics
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Table 3
Rules for generating reports of anatomical abnormalities (symbolic feature
descriptions initalics)

Reported anatomical
abnormality

Feature-based rule

Small lung volume Length of costal edge:short (or long)
Over-inflated lung
Asymmetric lung volumes
Silhouette sign Edge:unfound
Unclear interfaces Edge strength:weak
Raised hemi-diaphragm Height of the right hemi-diaphragm above

the left: low (or high)
Abnormal lateral portion of
hemi-diaphragm (query
pleural effusion)

Orientation at endpoint of hemi-
diaphragm:abnormal

Unclear cardiac silhouette Length of mediastinal edge:short, or
strength of mediastinal edge:unclear

Widening of the upper
mediastinum

Distance between upper endpoints of the
mediastinal edges:enlarged

Cardiomegaly High cardiothoracic ratio, i.e. max. width
of mediastinal edges/max. width of costal
edges

Abnormal lung density High average gray-level of lung region
Asymmetry of lung density Abnormal density in single lung



Indigo 2 workstation. Common LISP (with Object System
extension) was found to be convenient for creating frames
and performing inferencing and control. Therefore, most of
the system architecture is coded in LISP, with the image
processing routines being implemented in C.

4. Experimental results

4.1. Experiments

Some preliminary experiments were performed to gauge
the potential of the approach. A set of 14 images was used
for testing, acquired by computed radiography (CR) or from
films scanned on a laser digitizer. All images were
subsampled to dimensions of approximately 256× 256 to
allow fast image processing. This resolution was adequate
given that we are currently only analyzing large-scale anat-
omy. Total processing time was approximately 2 min on the
Indigo 2. The use of higher-resolution images does not
effect the speed of matching and analysis, since these
processes deal with parametric feature descriptions of

image primitives, however, the low-level computation of
the edge images is slower.

The test images were not chosen randomly. They were
selected with the aim of having 50% normal and 50% abnor-
mal images such that most of the detectable abnormalities
were covered. Five of the images were from our training set
and nine were previously unseen test images.

For each set image, an experienced radiologist was asked
to identify abnormalities from the set of 18 specified in
Table 4. These abnormalities were compared against those
reported automatically by the system.

4.2. Results

Table 4 shows the abnormalities which were reported by
the radiologist and the system for each image. For the total
of 252 tests for abnormalities, the system performance is
summarized in Table 5, where an abnormal finding is
considered a positive result.

We identify two main factors contributing to the small
number of false positive and false negative test results: (a)
for a low-contrast edge, the edge detection is often inaccu-
rate; (b) the inference engine produces a confidence score
for each reporting decision, and Table 4 includes all non-
zero confidences as positive, therefore some reported
abnormalities with very low confidences are false positives.
Five of the false positives were reported with a confidence
less than 0.4.

Fig. 12 shows the system output for two images or normal
anatomy, with the detected lung boundary and reports
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Table 4
Comparison of system output against a radiologist’s assessment (for limited set of abnormalities):X reported by both (true-positive);W reported by radiologist
only (false-negative);× reported by system only (false-positive)

Image identifier A B C D E F G H I J K L M N

Lung volume
Small right X

Small left × X X

Asymmetric × X X X

Lung density
High right
High left W X W

Asymmetric X X X ×
Unclear silhouette

Right costal
Right mediastinal ×
Right hemi-diaphragm W

Left costal X X

Left mediastinal X X X

Left hemi-diaphragm × X X ×
Cardiac X × X X X X

Raised hemi-diaphragm
Right X

Left × X X

Abnormal lateral hemi-diaphragm
Right X

Left X × W × X X

Cardiomegaly X

Table 5
Summary of test results, where an abnormal finding is considered a positive
test result

True False

Negative 208 4
Positive 30 10
Total 238 14



showing no detected abnormalities. Figs. 13 and 14 show
labeled edges and automatically generated reports for four
of the test images of abnormal anatomy. Most of the
reported abnormalities agree with the radiologist’s assess-
ment (see Table 4). However, we now examine in detail the
causes of a small number of false positive and negative
reports from Fig. 14.

In Fig. 14a, most of the left diaphragmatic silhouette
cannot be seen. Therefore the system was unable to identify
it and has correctly reported it as ‘‘unclear’’. However, a
small amount of the lateral portion of the hemi-diaphragm is
visible, and the radiologist was able to conclude that this
portion is abnormal and indicative of pleural effusion. Since
the model described only the diaphragm as a whole, the
system was unable to recognize and report on the small

lateral portion. A more detailed anatomical model may
have prevented this false negative. The right hemi-
diaphragm has a clearer silhouette (edge) and was correctly
identified by the system as exhibiting an abnormality caused
by pleural effusion.

In Fig. 14b, the left lung field is totally opaque, and none
of its interfaces are visible. However, the system has
wrongly identified a rib-edge as the left hemi-diaphragm.
This is because the matching strategy is to find the best
candidate which meets the model constraints, even if they
are satisfied with low confidence. The reason for this
approach is to allow the system to recognize highly abnor-
mal (unexpected) anatomy. The mis-identification of the left
hemi-diaphragm has led to false positive reports regarding
the lung size and raised position of the hemi-diaphragm. The
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Fig. 12. System output for test images of normal anatomy.



system has reported that the labeled edge is both unclear and
malpositioned (raised) with respect to its expectations for
the left hemi-diaphragm.

5. Discussion

The experimental testing is not intended to be a validation
of the system. There are too few subjects, and the test image
set was not to a random sample. However, the results
illustrate the potential of the system and knowledge-based

methodology. Given the simplicity of the current model, the
number of abnormalities that could be identified was
encouraging. However, to be clinically useful the system
would need to be expanded to include more subtle struc-
tures, for example, pulmonary nodules, also much more
extensive validation would be required. Nevertheless the
current system could be combined with algorithms which
specifically detect nodules [5,6] or perform texture analysis
[6,26]. Our system could identify the lung boundary and
report on whether it was normal and well-defined and thus
suitable for further low-level processing.
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Fig. 13. System output for test images of abnormal anatomy. The bars indicate confidence levels (fully blackened) confidence� 1.0).



The difficulty of the object recognition problem is largely
determined by the accuracy of the low-level segmentation
routines and the ability of selected features to reliably
distinguish the anatomical structures. These factors will
influence the amount of knowledge that is required, the
number of image candidates, and the level of uncertainty
in matching.

The design of the system was motivated by a desire to
develop a general-purpose framework for knowledge-based
medical image interpretation. The aspects cited as contribu-
tions in Section 1 are potentially useful in other applica-
tions. The edge detection algorithms and feature-space
representation (choice of features used for matching) are
specific to projection X-ray images. Elsewhere we have

reported on the application of this methodology to segment-
ing thoracic CT images [43]. However, application to other
problems will be needed before we can conclude that the
architecture is generic.

The mapping of the model and image to a common
feature space was emphasized because of its importance
in giving modularity, and independence of data representa-
tions. In this experimental system, the parameters used in
the model were chosen to be similar to those in the feature
space for simplicity. However, the model could be extended
by adding data slots and/or frames. A goal of future work is
to develop a more complete and general 3D model [44], but
for the chest X-ray application, transformation of the 3D
model into the 2D feature-space is a difficult problem.
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Fig. 14. System output for test images of abnormal anatomy. The bars indicate confidence levels (fully blackened) confidence� 1.0).



6. Conclusion

We have developed a knowledge-based approach to lung
boundary interpretation in chest X-rays. Within a modular
system architecture, an explicit anatomical model is
matched to image data by mapping both to a common
feature space for comparison. The knowledge-based
approach augments low-level segmentation techniques by
allowing high-level image interpretation.

In our approach, domain knowledge provides guidance
for object recognition. Using the hierarchy implied by rela-
tionships in the model, the inferencing and control system
automatically schedules the identification of anatomical
structures. Both a priori and a posteriori information are
combined to constrain segmentation of expected anatomy.

We have developed methods for modeling normal and
pathological variations in anatomy. Fuzzy sets provide an
intuitive representation and allow symbolic description of
image feature values, so that high-level rules can be used to
generate reports on suspected abnormalities.

Preliminary experimental results are encouraging but
further validation is required.

Acknowledgements

The authors thank our colleagues at the CSIRO, Austra-
lia, in particular, Drs. George Kossoff, David Robinson,
HabibTalhami, Thanasis Loupas, Mark Berman, Ed
Breen, Leanne Bischof and Rosemary Irrgang. Thanks
also to Prof. John Hiller of the University of New South
Wales and Dr. Michael McNitt-Gray from the UCLA
Department of Radiological Sciences for their support and
review of the manuscript. Image data was supplied by the
Department of Radiology, St. Vincents Hospital, Sydney,
Australia and the Department of Radiological Sciences,
UCLA School of Medicine.

References

[1] Katsuragawa S, Doi K, MacMahon H, Nakamori N, Sasaki Y,
Fennessy JJ. Quantitative computer-aided analysis of lung texture
in chest radiographs. Radiographics 1990;10(2):257–269.

[2] Vargas-Voracek R, Floyd CE. Computer-aided diagnosis of intersti-
tial lung disease: A probabilistic texture-based analysis. Radiology
1995;425:197.

[3] Sanada S, Doi K, MacMahon H. Image feature analysis and compu-
ter-aided diagnosis in digital radiography: automated detection of
pneumothorax in chest images. Medical Physics 1992;19(5):1153–
1160.

[4] Nakamori N, Doi K, MacMahon H, Sasaki Y, Montner S. Effect of
heart-size parameters computed from digital chest radiographs on
detection of cardiomegaly: potential usefulness for computer-aided
diagnosis. Investigative Radiology 1991;26:546–550.

[5] Ballard DH, Sklansky J. A ladder-structured decision tree for recog-
nizing tumors in chest radiographs. IEEE Transactions on Computers
1976;C-25(5):503–513.

[6] Giger ML, Doi K, MacMahon H, Metz CE, Yin FF. Pulmonary

nodules: computer-aided detection in digital chest images. Radio-
graphics 1990;10(1):41–51.

[7] Stansfield SA. ANGY: A rule-based expert system for automatic
segmentation of coronary vessels from digital subtracted angiograms.
IEEE Transactions on Pattern Analysis and Machine Intelligence
1986;PAMI-8(2):188–199.

[8] Vernazza GL, Serpico SB, Dellepiane SG. A knowledge-based
system for biomedical image processing and recognitions. IEEE
Transactions on Circuits and Systems 1987;CAS-34(11):1399–1416.

[9] Fox J, Walker N. Knowledge-based interpretation of medical images.
NATO ASI Series, Mathematics and Computer Science in Medical
Imaging, Vol. F39, 1988.

[10] Karssemeijer N, Van Erning L, Eijkman E. Recognition of organs in
CT-image sequences: a model guided approach. Computers and
Biomedical Research 1988;21:434–438.

[11] Smets C, van de Werf F, Suetens P, Marchal G. An expert system for
the labeling and 3D reconstruction of the coronary arteries from two
projections. International Journal of Cardiac Imaging 1990;5:145–
154.

[12] Delaere D, Smets C, Suetens P, Marchal G. Knowledge-based system
for the three-dimensional reconstruction of blood vessels from two
angiographic projections. MBEC North Sea Special Feature, 1991.

[13] Dellepiane S, Venturi G, Vernazza G. Model generation and model
matching of real images by a fuzzy approach. Pattern Recognition
1991;25(2):115–137.

[14] Garreau M, Coatrieux JL, Collorec R, Chardenon C. A knowledge-
based approach for 3-D reconstruction and labelling of vascular
networks from biplane angiographic projections. IEEE Transactions
on Medical Imaging 1991;10(2):122–131.

[15] Robinson GP, Colchester AC, Griffin LD. Model-based recognition of
anatomical objects from medical images. In: Barrett HH, Gmitro AF,
editors. Information processing in medical imaging, Proc. 13th Inter-
national Conference, IPMI ’93. Springer, 1993.

[16] Levitt TS, Hedgcock MW, Dye JW, Johnston SE, Shadle VM, Vosky
D. Bayesian inference for model-based segmentation of computed
radiographs of the hand. Artificial Intelligence in Medicine
1993;5(4):365–387.

[17] Li H, Deklerck R, De Cuyper B, Hermanus A, Nyssen E, Cornelis J.
Object recognition in brain CT-scans: knowledge-based fusion of data
from multiple feature extractors. IEEE Transactions on Medical
Imaging 1995;14(2):212–229.

[18] Benn DK, Pettigrew JC, Sim M, Laine AF, Mancuso AA, De Bose
CD, Stambuck HE. A pilot study of automated knowledge-based
recognition of facial bones from axial CT slices. In: Lemke HU,
Inamura K, Jaffe CC, Vannier MW, editors. Proc. Computer Assisted
Radiology Car ’95. Berlin: Springer, 1995.

[19] Park W, Hoffman EA, Sonka M. Fuzzy logic approach to extraction of
intrathoracic airway trees from three-dimensional CT images. In:
Loew MH, Hanson KM, editors. Proc. SPIE, Medical Imaging
1996: Image Processing, Vol. 2710, 1996, pp. 210–219.

[20] Sonka M, Tadikonda SK, Collins SM. Knowledge-based interpreta-
tion of MR Brain Images. IEEE Transactions on Medical Imaging
1996;15(4):443–452.

[21] Duryea J, Boone JM. A fully automated algorithm for the segmenta-
tion of lung fields on digital chest radiographic images. Medical
Physics 1995;22(2):183–191.

[22] Sutton RN, Hall EL. Texture measures for automatic classification of
pulmonary disease. IEEE Transactions on Computers 1972;21:667–
676.

[23] McNitt-Gray MF, Huang HK, Sayre JW. Feature selection in the
pattern classification problem of digital chest radiograph segmenta-
tion. IEEE Transactions on Medical Imaging 1995;14(3):537–547.

[24] Toriwaki J, Suenaga Y, Negoro T, Fukumura T. Pattern recognition of
chest X-ray images. Computer Graphics and Image Processing
1973;2:252–271.

[25] Chien YP, Fu K. Recognition of X-ray picture patterns. IEEE Trans-
actions on Systems, Man and Cybernetics 1974;SMC-4(2):145–156.

M.S. Brown et al. / Computerized Medical Imaging and Graphics 22 (1998) 463–477476



[26] Doi K, Giger ML, et al. Computer-aided diagnosis: development of
automated schemes for quantitative analysis of radiographic images.
Seminars in Ultrasound, CT and MRI 1992;13(2):150–152.

[27] Armato SG, Giger ML, MacMahon H. Automated lung segmentation
in digitized posteroanterior chest radiographs. Academic Radiology
1998;5:245–255.

[28] Hanson AR, Riseman EM. VISIONS–a computer system for inter-
preting scenes. In: Hanson AR, Riseman EM, editors. Computer
vision systems, New York: Academic Press, 1978. pp. 303–333.

[29] Nagao M, Matsuyama T. A structural analysis of complex aerial
photographs. New York: Plenum Press, 1980.

[30] Draper BA, Collins RT, Brolio J, Hanson AR, Riseman EM. Issues in
the development of a blackboard-based schema system for image
understanding. In: Englemore RS, Morgan AJ, editors. Blackboard
systems, Reading, MA: Addision-Wesley, 1988. pp. 189–218.

[31] Kuan D, Shariat H, Dutta K. Constraint-based image understanding
system for aeriel imagery interpretation. In: Proc. Annual AI Systems
in Government Conference, Washington DC, 1989:141–147.

[32] Kulikowski CA. Artificial intelligence methods and systems for medi-
cal consulations. IEEE Transactions on pattern analysis and Machine
Intelligence 1980;PAMI-2(5):464–476.

[33] Shortliffe EH. Computer-based medical consulations: MYCIN. New
York: Elsevier, 1976.

[34] Aikins JS, Kunz JC, Shortliffe EH, Fallat RJ. PUFF: An expert system
for interpretation of pulmonary function data. Computers and Biome-
dical Research 1983;16:199–208.

[35] Nii HP. Blackboard systems: the blackboard model of problem
solving and the evolution of blackboard architectures. In: The AI
Magazine, 1986:38–53.

[36] Bajcsy R, Lieberson R, Reivich M. A computerized system for the
elastic matching of deformed radiographic images to idealized atlas
images. Journal of Computer Assisted Tomography 1983;7(4):618–
625.

[37] Arata LK, Dhawan AP, Broderick JP, Gaskil-Shipley MF, Levy AV,
Volkow ND. Three-dimensional anatomical model-based segmenta-
tion of MR brain images through principal axes registration. IEEE
Transactions on Biomedical Engineering 1995;42(11):1069–1078.

[38] Kamber M, Shinghal R, Collins DL, Francis GS, Evans AC. Model-
based 3-D segmentation of multiple sclerosis lesions in magnetic
resonance brain images. IEEE Transactions on Medical Imaging
1995;14(3):442–453.

[39] Minsky M. A framework for representing knowledge. In: Winston
PH, editor. The psychology of computer vision, New York:
McGraw-Hill Book Company, 1975. pp. 211–277.

[40] Quillian MR. Semantic memory. In: Minsky MM, editor. Semantic
information processing, Cambridge, MA: MIT Press, 1968.

[41] Zadeh LA. The concept of a linguistic variable and its application to
approximate reasoning-I. Information and Control 1975;8:199–249.

[42] Buckley JJ, Siler W, Tucker D. A fuzzy expert system. Fuzzy Sets and
Systems 1986;20:1–16.

[43] Brown MS, McNitt-Gray MF, Mankovich NJ, Goldin JG, Hiller J,
Wilson LS, Aberle DR. Method for segmenting chest CT image data
using an anatomical model: preliminary results. IEEE Transactions on
Medical Imaging 1997;16(6):828–839.

[44] Wilson L, Brown M, Talhami H, Gill R, Sun C, Doust B. Medical
image understanding using anatomical models: application to chest
X-rays. In: Bizais Y, Barillot C, Di Paola R, editors. Information
Processing in Medical Imaging. Kluwer, 1995. p. 239–50.

M.S. Brown et al. / Computerized Medical Imaging and Graphics 22 (1998) 463–477 477

Robert Gill received his undergraduate education in science and engi-
neering at the University of Sydney and a PhD in electrical engineering
from Stanford University. In 1975 he returned to Australia to take up a
research position in the Ultrasonics Institute of the Commonwealth
Department of Health. In 1989 the Institute was transferred to the
CSIRO, Australia’s premier scientific research organisation. Dr. Gill
is General Manager for Health Services in the CSIRO’s Division of
Telecommunications & Industrial Physics. For many years his primary
field of interest was Doppler ultrasound, with particular emphasis on
the measurement of blood flow. More recently he has become involved
in the area of computer-aided diagnosis, decision support and knowl-
edge-based image analysis.

Bruce Doust received his medical qualifications from the University of
Sydney in 1963 and obtained his postgraduate qualifications in Radi-
ology at Sydney Hospital. During the five years at the University of
Michigan and the seven years at the Medical College of Wisconsin, he
developed particular interests in ultrasound and CT. He returned to
Australia in 1981 to take up his current position as Director of Radi-
ology at St. Vincents Hospital and Associate Professor of Medicine at
the University of New South Wales.

Matthew Brown received his PhD in computer science from the Univer-
sity of New South Wales in 1996. His PhD research was in knowledge-
based interpretation of medical images, undertaken in collaboration
with the Division of Telecommunications and Industrial Physics of
Australia’s Commonwealth Scientific and Industrial Research Organi-
sation (CSIRO). In 1998 he became a Visiting Assistant Professor in the
Department of Radiological Sciences at the University of California,
Los Angeles, where he was continuing research in knowledge-based
segmentation and analysis of medical images.

Laurence Wilson received his Physics PhD in 1973 from the University
of Sydney. After postdoctoral work at Oxford University, he joined the
Ultrasonics Institute, which has now been incorporated in to the Divi-
sion of Telecommunications and Industrial Physics of Australia’s
Commonwealth Scientific and Industrial Research Organisation
(CSIRO). Initially, he worked in medical ultrasound, particularly tissue
characterization and Doppler, where he did research in multidimen-
sional and broad-band methods. More recently, he is leading a group
working in computer aided diagnosis, with particular interest in
mammography and segmentation using anatomical models.

Changming Sun received his PhD in the area of Computer Vision at
Imperial College of Science, Technology and Medicine, London in
1992. Then he joined CSIRO Mathematical and Information Sciences,
Australia, in December 1992 as Research Scientist, both doing research
and working on applied projects. His research interests include compu-
ter vision, image analysis and photogrammetry. Dr Sun is a member of
IEEE, SPIE and The Australian Pattern Recognition Society.


