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Abstract

Shortest path algorithms are used for a large variety of optimisation problems in
network and transportation analysis. They are also used in image analysis for object
segmentation, disparity estimation, path finding and crack detection. Sometimes
the topology of the problem demands that the path be circular. Such circular path
constraints occur in polar object segmentation, disparity estimation for panoramic
stereo images and in shortest paths around a cylinder. In this paper we present a
new efficient algorithm for circular shortest path determination on a u-by-v trellis in
(@) (ul'ﬁv) average time. We impose a binary search tree on the set of path endpoints
and use a best-first Branch and Bound search technique to efficiently obtain the
global minimum circular path. The typical running time of our circular shortest
path algorithm on a 256 %256 image is in the order of 0.1 seconds on a 1GHz Dell
P3 workstation under the Linux operating system. Applications to crack detection
and object segmentation are presented.
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1 Introduction

The computation of shortest paths is a fundamental problem from graph the-
ory with a range of efficient solutions. Many optimisation problems may be
phrased in graph theoretic terms as a shortest path problem, leading to fast
global solutions. Such problems occur in network analysis, transportation and
image processing.
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A shortest path is defined as a path of least cost between two nodes, where
the cost is the sum of edge and vertex weights along the path. By suitable
choice of graph and associated costs many problems may be transformed into
a shortest path computation. Shortest path algorithms typically rely upon a
labelling method [1].

Shortest path algorithms have been applied to finding curvilinear features such
as cracks and roads in images. Buckley and Yang [2| developed a regularised
shortest-path extraction method based on time-delayed dynamic programming
and demonstrated its application to road detection in satellite images and
fracture detection in borehole core images from geophysics. In [3|, Barzohar
and Cooper present a geometric-stochastic road detection technique based on
a MAP (Maximum A Posteriori probability) formulation realised by dynamic
programming. Merlet and Zerubia [4] extended a variant of the A* algorithm
to cliques for detecting roads and valleys in satellite (SPOT) images.

Stereo matching was first formulated as a shortest path problem in the mid-
80’s by Ohta and Kanade [5] and Lloyd [6]. The shortest path approach re-
mains much the same in current research [7|, where the path through the
correlation matrix of maximum sum is obtained.

In some applications the topology of the problem demands a circular path. In
object segmentation the boundary of the object is typically a closed contour
and hence the path endpoints must be connected. In [8], Bamford and Lovell
use a Viterbi-based shortest path algorithm to segment cell nucleii using a
radial trellis centred on the cell. A two-pass scheme is proposed to find an
approximate segmentation. The circularity problem was also recognised by
Jermyn and Ishikawa |9] who proposed using a minimum mean-weight cyclic
path algorithm for object segmentation. However their algorithm is computa-
tionally expensive running in O (u?v?) time on a u-by-v image. The restriction
of the goal function to the mean weight of a path is also a significant limitation.

Panoramic stereo is another example of the need for circular paths, as paths
through the cross-correlation matrix should have both endpoints connected
to ensure a smooth surface [10]. In [11,12], Sun and Pallottino propose a
number of Circular Shortest Path (CSP) algorithms to solve these and other
problems. Three of these, the Image Patching Algorithm (IPA), the Multiple
Backtracking Algorithm (MBTA) and their hybrid give solutions in O (uv)
time complexity but are not guaranteed to obtain the global CSP. Sun and
Pallottino proposed a fourth approach, the Multiple Search Algorithm (MSA)
which is guaranteed to find the global CSP in O (u?v) time by solving u inde-
pendent shortest path problems. They demonstrated the application of their
algorithms to object segmentation, disparity estimation for panoramic stereo
and crack detection on borehole cores.



In this paper we present a new efficient algorithm for CSP determination on a
u-by-v trellis in O (u'%v) average time. Our algorithm guarantees to find the
globally optimal CSP. Section 2 covers the preliminary work in shortest path
algorithms and formalises the problem at hand. In Section 3 we propose a
Branch and Bound solution to the determination of CSPs. Section 4 analyses
the computational complexity of our algorithm. Section 5 gives results verify-
ing the complexity analysis of Section 4 and shows a number of applications
of the proposed CSP algorithm. Section 6 concludes.

2 Preliminaries
2.1 Problem Specification

In this subsection we specify the problem that we are attempting to solve,
that of the circular shortest path. Consider a discrete image ¢ : Z, X Z, — R,
where ¢ (1, ) is the cost of traversing the pixel at row ¢ and column j in the
image. For example, such an image could be the negative log of the probability
for each point lying on a crack, or it could be some decreasing function of the
cross-correlations between a stereo image pair.

Let GG be the directed, vertex-weighted graph with vertex set V = Z, x Z,.
With the notation a = (a1, as) € V we define the edge set

E:{(a7b) |(Z,b€‘/, a2262_1, |al—b1‘ < 1}

Such a graph G is known as a stable acyclic sequential layered graph [12], or
simply as a trellis |8]. See Figure 1 for an example.

A shortest path across such a trellis is defined as a sequence of connected
vertices

P = (aj ‘aj eV, je, (aj,ajH) € E)
which minimises the path length

L(P)= ilcmf)

over all admissable paths P. In contrast to standard shortest path problems
we enforce the additional constraint that |a] —ay| < 1, such that the two
endpoints a',a’ of the path are connected when periodically extending the
trellis.



2.2 Single-Source Shortest Path Algorithms

Here we consider the single-source shortest path problem: for a given vertex
set S C V (the source), find the shortest path from S to a for all connected
a € V. Perhaps the most well known solution to the single-source shortest path
problem is Dijkstra’s algorithm [13], which operates in O (|V|log|V|) time for
any graph with ¢ > 0 on |V vertices. However, due to the trellis structure
of our graph a simpler algorithm is available. Following Sun & Pallottino [11]
we use a dynamic programming technique to assign the optimal distances one
column or layer at a time.

As the graph is vertex-weighted, a simple approach is to assign the distance
to vertex b € V based on the distances in the previous layer as

distance (b) = ¢ (b) + min {distance (a) |(a,b) € E'}

The distances of the vertices in the first layer are simply their costs:

Va € V]ay =1, distance (a) = ¢ (a)

This recursive formulation of the distances admits a solution by dynamic pro-
gramming. Note that unlike Dijkstra’s algorithm this technique allows for neg-
ative vertex weights. The resulting algorithm has complexity O (uv), regardless
of the cost function c. See [14,1] for a review of shortest path algorithms. The
following gives the algorithm for finding an ordinary shortest path by dynamic
programming:

Algorithm 1 (Shortest Path by Dynamic Programming)

Initialisation:
for each a' = (i,1) in the first layer
distance(a’) = c¢(a")

Propagation:
for each column j € [2,v]
for each vertex b= (i, 7), i€ [l, u]
distance(b) = ¢(b) + min{distance(a)|(a, b) € E)}
parent(b) = arg min{ distance(a)|(a, b) € E)}

Backtracking;:
p” = arg min{ distance(a)|as = v}
for j fromv—1to 1

p’ = parent(p’*!)



3 A Branch and Bound CSP Formulation

Algorithm 1 will not generally give a circular path across the trellis. Such
a global constraint is difficult to fit into the framework of a shortest path
algorithm which is efficient primarily because it admits a local solution for
each vertex. In [12,11], Sun and Pallottino suggest five solutions. Three of
these, the Image Patching Algorithm, the Multiple Backtracking Algorithm
and their hybrid give solutions in O (uv) time complexity but are not guar-
anteed to obtain the global CSP. A fourth approach known as the Multiple
Search Algorithm (MSA) was proposed to solve the CSP problem in O (u?v)
time by solving u independent shortest path problems, one for each source
vertex in the first layer. By construction each such path is circular, and hence
the CSP can be determined by taking the shortest of these circular paths.

Sun & Pallottino observed that the shortest path is a lower bound for the
CSP. As a simple proof by contradiction, if this were not true then the CSP
would be shorter than the shortest path. By corollary if a shortest path is
circular then it is the CSP. Our new algorithm makes use of a generalisation
of this property.

Consider solving the shortest path problem starting from source set S C L,
where L; = {a € V']ay = 1} is the first layer of the trellis G. We define the
set of admissable paths (with respect to S) as all P = (p’) such that 3s € S :
|so — ps| < 1, i.e. whose end points connect back to an element of the source
set S.

Lemma 1 Let S, 5" C Ly be two source sets with S" C S. The length L (P) of
the shortest path P = (p') admissible with respect to S is less than or equal to
the length L (P') of the shortest path P' = (p'*) admissible with respect to S'.

PROOF. Let ®(S) be the set of admissable paths with respect to S, and
® (S') defined likewise for S’. Then ®(S’) C ®(S5), so min (L (P (5))) <
min (L (' (5))). Therefore the length of the shortest admissable path through
S is a lower bound for the length of all admissable paths through S’. O

Corollary 2 Observe that if | S’| = 1 then ® (S") consists of all circular paths
through S’. Hence by Lemma 1 the length of the shortest admissable path
through S s a lower bound for all circular paths through S.

Figure 2 gives an example of an admissable path on a typical source set .S,
depicted in thick lines.

We now impose a binary search tree on the set of potential source vertices
in the first layer. The root node of the search tree corresponds to the source



set S = Lj, the entire first layer. Each node’s children partition its source
set into two contiguous halves. The leaves of the tree are all u single vertices
of L;. This tree allows us to apply the divide and conquer paradigm to the
problem of determining the CSP. We apply a best-first Branch and Bound [15]
algorithm to search the binary tree, evaluating only those subtrees which may
contain the CSP. Figure 3 exemplifies the binary tree for u = 8.

We now observe a number of properties of the tree. By Lemma 1 the shortest
path for any node in the search tree forms a lower bound for the entire subtree
rooted at that node. The act of partitioning a search node’s source set S into
its children y; and x» will never break up a circular path. However, any non-
circular path will eventually split as its starting and ending points are not
adjacent. So the potential circular paths become more prominent as we search
further down the tree, until only circular paths are considered at the leaves.

We perform a priority-first-search of the binary tree, with the negative lower
bound of a node being assigned as its priority. The priority queue is initialised
with the root node of the search tree, whose source set corresponds to L;. At
each step in our algorithm we take the node in the search tree with the lowest
bound and split it into its two subtrees. The simple shortest path algorithm
(Algorithm 1) is used to evaluate each subtree’s lower bounds given their
source sets before inserting them into the priority queue. We also backtrack
along their shortest paths to determine if the shortest path for each search
node is circular. We give our Branch and Bound CSP algorithm as follows:

Algorithm 2 (Branch and Bound Circular Shortest Path)

Initialisation:
Initialise the Root search node as a non-circular path of arbitrary length
enqueue(Root)

Priority First Search:
while (true)
n = dequeue(), where n is a node of the binary tree
if n is circular
return n
halt
else for each child x of n
Compute the shortest path across the trellis for the source set x
Store in x whether the shortest path was circular
enqueue(y) with priority equal to the negative shortest path length

Lemma 3 Algorithm 2 gives the globally shortest circular path.

PROOF. Observe that the source sets in the queue form a partitioning of



L;. By the corollary of Lemma 1 then the minimum lower bound of the nodes
in the priority queue is a global lower bound on the length of the CSP. Thus
if the node with highest priority has as its shortest path a circular path we
are guaranteed that this path is the globally shortest circular path across the
trellis. O

4 Complexity Analysis

The running time of our algorithm is dependent upon the structure of the
cost array. In general Branch and Bound techniques have poor worst-case
behaviour [16]. For example, consider Figure 4.

By suitably extending this pattern we may construct a trellis of arbitrarily
large size for which the binary search tree is inefficient. Observe that any
contiguous source set of 4 vertices will generate a shortest path of length 0.
We are required to split each search node down to 3 or fewer source vertices,
which is equivalent to evaluating up to one half of the nodes in the binary
search tree. This class of cost functions will run in O (u?v) time, the same
order as the Multiple Search Algorithm [11].

However, such pathological instances are extremely improbable and should
not be a cause for concern. A classic parallel is Hoare’s quicksort algorithm
[17], which despite an O (N?) worst-case bound for sorting N elements is on
average one of the fastest algorithms for sorting general data. Here we present
a simple analysis of the average running time of our algorithm.

4.1 Properties of the Branch and Bound CSP Algorithm

The halting condition for our algorithm is that the best circular path obtained
is shorter than or equal to all other shortest paths for each search node. Hence
our algorithm must split each path which is shorter than the circular shortest
path. We call a path which is shorter than the CSP a short path.

The search tree must be evaluated along all branches from the root to the
nodes which split the short paths. The priority-first search ensures that only
the nodes which split the short paths are evaluated, minimising the number
of shortest path computations required. Paths whose endpoints are far from
meeting will be split near the root of the search tree, and may well be split
along the way to other short paths. Paths whose endpoints are nearly con-
nected are near-circular and quite possibly form part of the circular shortest
path, so are worth investigating.



4.2 Analysis of the Branch and Bound CSP Algorithm

Let N,, be the number of search nodes to be evaluated in the subtree rooted at
node n. Let R denote the root of the search tree, with x; and y» its children.
Due to the data dependant complexity of Branch and Bound it is difficult to
analyse the average case, so following Zhang and Korf [16] we take a simple
model of the search dynamics by assuming that each node has a constant
probability S of being split given that its parent has been split. Then the
expected number of shortest path computations to perform is

E(NR) =2+ pFE (NX1) + 0E (NX2)

Given that x; and y, symmetrically partition the first layer, we obtain E (N,,) =
E (N,,) so we have

E(Ng) =24 2BE (N,,)
The tree has [lgu] + 1 levels with the root always split, where [lgu| denotes
the smallest integer greater than or equal to lgu. Recursing we obtain

E(NR):2+25(2+2ﬁ(---)):2(1+2ﬁ+(2ﬁ)2+...+(25)ﬂgu1)

9. (QB)flgU1+171
So FE (Ng) = 1 7
2(1+[lgu]) 8=

N N—=

The cost of splitting a search node is O (uv), the time taken to perform a
shortest path computation for each child node.

For 8> 3, E(Ng)=2- (Qﬁ%;iul”l < 2%6;21 - 1829 for large u, giving an overall

time complexity of O (ung(w)v).
For g = %, we obtain an overall time complexity of O (uvlgu) directly.

For 3 < %, E (Ng) = ﬁ for large u, giving an overall time complexity of

O (uv).

5 Results
5.1 Computational Speed

In order to estimate the average running time and to verify the simple com-
plexity analysis of Section 4.2 we tested our algorithm on a large number of



random images. Image sizes ranging from 200x200 to 4000x4000 were consid-
ered, with pixel values drawn independently from a uniform random distribu-
tion. The running times on each image size were averaged over 100 samples.
The tests were performed on a 1GHz Dell P3 workstation under the Linux
operating system. The results (Figure 5 and Table 1) agree with our simple
complexity analysis over the wide range of sizes tested. Linear regression of
Figure 5 gives a slope of 2 + 1g(208) = 2.6 or § = 0.76 for uniformly ran-
domly distributed trellises. This equates to an O (u'%v) average running time
on random data. The algorithm is likely to perform significantly better for real
applications, as problems for which a CSP is desired have innately periodic
and structured cost functions.

5.2 Object Segmentation

To demonstrate the application of CSPs to object segmentation two cell images
are presented. Figure 6(a) depicts Cyclostephanos Dubius, a diatom. Segmen-
tation is performed by taking a polar unwrapping of the cell about an interior
point, then finding the CSP across the resulting trellis as shown in Figure 6(b).
This segmentation is then projected back onto the original image as shown in
Figure 6(c).

Figure 7(a) shows three overlapping cell nuclei where the central cell is to be
separated. Segmentation is performed on the polar unwrapping of the gradient
image, by shortest path (b) and by circular shortest path (e). The resulting
segmentations (c, f) clearly demonstrate the necessity of circular paths in
object segmentation.

5.3 Borehole Crack Detection

Figure 8(a, ¢) depicts two borehole core surface images. These planar images
are an unwrapping of the cylindrical surface of the borehole core (b, d), so
it is natural to require that the endpoints of our shortest path connect. The
CSP algorithm presented in this paper was applied to both images to detect
dark curvilinear features such as cracks and flaws.

5.4  Comparison to Existing Methods

Here we compare the existing methods to Algorithm 2 on a trellis (Figure 9(a))
similar to Figure 4. Figure 9(b) shows the shortest path across the trellis
without the circularity constraint. Figure 9(c) shows the path obtained by the



MBTA/IPA algorithm of Sun and Pallottino [11,12]. Figure 9(d) shows the
correct CSP obtained by our Branch and Bound CSP algorithm. The path
obtained by our new algorithm is the global optimum.

6 Conclusions

We have developed a new algorithm for finding the circular shortest path
across a trellis. This algorithm finds the shortest path under the constraint
that the starting and ending positions are connected by using a Branch and
Bound search of the endpoints with a dynamic programming evaluation of
corresponding path lengths. This constraint is an important consideration in
many applications including polar object segmentation, disparity estimation
for panoramic stereo images and shortest paths around a cylinder. The algo-
rithm that we developed runs in O (u!%v) average time on uniformly random
images, with a worst case O (u*v) no worse than the Multiple Search Algo-
rithm. It is interesting to note that for some problems with low branching
probability the order of the algorithm may drop to O (uv), the same order
as the shortest path computation. The algorithm was applied to polar object
segmentation and crack detection on borehole cores. It was shown (Lemma 3)
to obtain the globally shortest circular path.
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Table 1

Trellis Size  Average Running Time (sec) MSA Running Time (sec)
200x200 0.065 1.62
500500 0.575 26.4
10001000 3.33 186
2000x2000 28.5 1443
4000x4000 164 12060
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Figure 1. An example trellis.

Figure 2. An example of a shortest path with restricted endpoints. Valid end points
are shown in black, with the corresponding shortest path in bold.

Figure 3. The binary search tree for v = 8. Only L;, the first layer of the trellis
containing the potential source vertices is depicted.

Figure 4. A pathological trellis. Asterisks represent vertices of infinite cost. This
pattern may be extended to any width by replication of the central column, and to
any height by extending the row pattern.

Figure 5. Average running time of our new algorithm for uniformly random images
(shown in logarithmic scale).

Figure 6. Segmentation of Cyclostephanos Dubius. (a) The original microscope image
of the diatom. (b) The polar unwrapping with circular shortest path overlayed. (c)
The corresponding segmentation contour.

Figure 7. Cell nuclei segmented by shortest path and circular shortest path. (a) The
original cell image. (d) The inverse gradient image. (b, ¢) The shortest path in the
polar domain, with the corresponding open contour. (e, f) The circular shortest path
in the polar domain, with the corresponding closed contour.

Figure 8. Two borehole core images: (a, c) are images shown flat; (b, d) are images
projected onto a cylinder. The circular shortest paths are overlayed.

Figure 9. Comparison of various CSP methods. (a) A pathological cost function.
Black is 0, grey is 1 and white is 11. (b) The shortest path, weight 1. (¢) The path
obtained by MBTA /IPA, weight 44. (d) The correct path obtained by our Branch
and Bound CSP algorithm, weight 7.

Table 1
Average running time for a few trellis sizes. Averages were obtained over 100 trials
on uniformly random cost functions. MSA running time is listed for comparison.
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